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Last presentation. Last session. Last day

“We wanted to save the best for last.”
- Katja Langen

“You must think I was born yesterday.”
- Anthony Mascia
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Outline
• Treatment planning
• Model-based treatment planning

– Applications and utility
– Results

• Future work

Treatment Planning
Current Practices

Unique Factors in Proton Treatment Planning
• Beam angle selection
• LET evaluation / optimization
• Emerging and evolving delivery 

modalities
– Proton arc therapy, FLASH therapy, 

GRID therapy, PBS + MLC, etc.
• Range uncertainty
• Nozzle and beam modifiers (e.g. 

range shifters, collimators, 
apertures, etc)

• PTV optimization
• Robust evaluation / optimization
• And so forth…
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• Beam angle selection
• LET evaluation / optimization
• New emerging or potential technologies, like proton arc 

therapy, FLASH therapy, GRID therapy, PBS+MLC, etc

Unique Factors in Proton Treatment Planning

Range Uncertainty

Antony Lomax.  AAPM Summer School 2013

Gantry, Nozzle and Beam Modifiers
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Robust Optimization

Example: Prostate + Nodes

Optimizations: PTV vs. Robust

Evaluated at uncertainties of 5mm / 3%



7/17/2019

5

Optimizations: PTV vs. Robust

Evaluated at uncertainties of 5mm / 3%

** looking at 95% dose cloud

Range Uncertainty Mitigation RO vs. PTV

Robust Opt
-3% uncertainty

PTV Opt
-3% uncertainty

Range Uncertainty Mitigation RO vs. PTV

Robust Opt
+3% uncertainty

PTV Opt
+3% uncertainty
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AI in Radiation Oncology

AI in Radiation Oncology

AI in Radiation Oncology

• Image segmentation
• Dose optimization
• Clinical decision support and outcome prediction

– Pre-planning outcome predictions
– Cross-correlating radiation oncology with genomics, imaging, 

EMRs
– Quantitative imaging

• Quality assurance
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Some comments and limitations

• Generally, Radiation Oncology datasets have been small relative to 
other professions

• Lack of access to high quality, standardized therapy and outcome 
data is an obstacle

• Specifically, on planning, knowledge-based planning has shown to:
– Increase efficiency
– Improve standardization
– Provide a quality assurance tool\
– “The need is emerging for QA of AI-based processed and other 

clinically deployed algorithms”

Knowledge-based planning

Knowledge-based planning aspects

• Dosimetric predictions
• Patient selection
• Clinical decision support
• Quality assurance
• Improved plan quality and efficiency
• Knowledge sharing
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Predicting potential dosimetric benefits

• Using at least 20 patients, 
models for several OARs 
are created and validated 
against at least 20 other 
patients

• Model used to predict 
proton benefits for photon 
patients

Model Prediction Correlated to Actual Planned Dose 
Distributions

Patient selection using knowledge base

• Patient selection is high 
priority in proton therapy, 
particularly in regional or 
national healthcare 
systems

• Model created for photon 
and proton for H&N 
patients
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Methodology
• Compare predicted 

and actual plans
• Validate plan quality
• Devise a selection 

criteria for sorting 
patients potentially for 
photon and proton

Manual Doses and KBP Prediction Doses Correlate

• For photon, KBP OAR dose 
often better than manual 
(slope = 0.84)

• For proton, KBP OAR dose 
nearer to manual (slope = 
0.96)

• NTCP models may be tied to 
such predictions, if desired

Step further in clinical decision support…

• Using plan classification 
and course feature 
definitions, a clinical 
decision support model 
constructed

• Model for H&N proton 
found at least 30 patients 
are needed for model

• Provide information prior 
to planning
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Clinical 
Decision 
Support

Standard planning process

Knowledge-based 
planning process

Using plan 
classification, 
treatment plan 
outcome model 
process

Quality assurance

• Using institutional models 
to quality assurance 
patient on clinical trial

• Institutional model used to 
identify potential outliers, 
then also model possible 
improvements given a 
different optimization 
approach
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Identifying cases for review

• Using a single institution’s 
model:
– Patients on trial with 

outliers, in this case V20 > 
37%, can be identified for 
review or additional 
planning optimization

Potential to improve plan 
quality on clinical trial 
setting
• On trial, based on this study, 

institutions often sacrificed 
coverage for OAR dose

• By using model, in many 
cases, these trade-off can be 
rebalanced

University of Cincinnati Initial Collaboration on KBP

Cincinnati Children’s began 
pilot project with Varian and 
VUMC testing a RapidPlan 
model using our patient 
datasets
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Initial Collaboration and Experience with VUMC

Cincinnati RapidPlan

Clinical Plan RapidPlan

CTV 7000
CTV 5000
Sub Mandibular
Parotids
Lips

Improved efficiency, quality and sharing

• Multi-institutional study
– VUMC
– UPenn
– PSI
– University of Cincinnati

• Clinical (“benchmark”) plans 
vs. Knowledge-based plans 
(KBP)

General Observations

• KBP had at least same CTV coverage 
at Benchmark

• KBP achieved similar (or better) normal 
tissue sparring

• Beam angle selection in the model vs. 
clinic matters

• Knowledge-based model, if well 
curated, produced at least clinically 
acceptable (and in many cases 
improved) results

• KBP may improve efficiency (e.g. KBP 
optimization was approx. 8 min)… 
however more thorough study on this is 
warranted
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KBP vs. Clinical Plans

Some practical gaps in applying KBP

• Release of technology
• Enhance knowledge sharing

– Particularly important in emerging technologies and/or in regions with 
limited experienced staff

• Generalization of models
– Beam angle optimization or selection
– PTV and robust optimization
– Inter-facility differences in hardware and procedure  (i.e. range shifters, 

range uncertainty quantification and management, etc)
• Incorporating additional patient information

– For example, radiosensitivity, risk tolerances, re-irradiation setting, etc.

Knowledge Sharing – VUMC & Cincinnati

Courtesy Alex Delaney, VUMC & Yongbin Zhang, Children’s/UC
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Moving Forward: University of Cincinnati H&N Model

• Build using clinical patients (H&N, oropharynx)
• Test model against clinical plans
• Assess model generalization for robust optimization
• Presented at AAPM 2018:

– Yongbin Zhang, et al. “Toward Statistical Model-Based Robust IMPT Planning: Cross-
Validation and Robust Generalization”, AAPM 2018

– Manuscript in process

Build model
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PTV Expansion

Case by Case Comparisons: Clinically Acceptable?
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Yongbin Zhang, et al. “Toward Statistical Model-Based Robust IMPT Planning: Cross-
Validation and Robust Generalization”, AAPM 2018



7/17/2019

15

Case by Case Comparisons: Clinical Acceptable?

Yongbin Zhang, et al. “Toward Statistical Model-Based Robust IMPT Planning: Cross-
Validation and Robust Generalization”, AAPM 2018

Nominal & Worst-Case Robustness Coverage?
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Yongbin Zhang, et al. “Toward Statistical Model-Based Robust IMPT Planning: Cross-
Validation and Robust Generalization”, AAPM 2018

Model Apply to Robustness Optimization?
Manual / Clinical Plans Model-based Plans

Yongbin Zhang, et al. “Toward Statistical Model-Based Robust IMPT Planning: Cross-
Validation and Robust Generalization”, AAPM 2018
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Additional Clinical RapidPlan Evaluation at CCHMC

Axial Coronal Sagittal

Craniopharyngioma

Anthony Mascia, et al. “Toward Class Solution for Craniopharyngioma”, PTCOG 2017

Summary

• Proton planning has unique aspects (eg, range uncertainty, beam angle 
selection, PTV and robust optimization methods, etc) presenting 
challenges to model creation

• Knowledge-based models require more patient data (ie, some studies 
showing 30 or more for a single model with a single purpose)

• Knowledge-based planning models may
– Predict dosimetric advantages
– Improve efficiency
– Improve standardization
– Provide quality assurance
– Pair with clinical decision support models

• Knowledge-based planning is part of the AI future in Radiation Oncology
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Thank you


