Immunotherapy Killed the IGRT Star: Integrating Radiotherapy Into Systemic Therapy for Metastatic Disease

Steven J. Chmura MD, PhD
Associate Professor
Director of Clinical and Translational Research
University of Chicago

Disclaimer

• Spouse: Medical Oncologist & Medical Director for Oncology Products at Astellas Pharmaceutical

• RefleXion Medical Systems

40 Minute Outline

• Expanding the role of radiotherapy for:
 – Local therapy for Limited (Oligometastatic) Disease

• What is immunotherapy? A Primer

• Can Radiotherapy Enhance Immunotherapy?
 – Local Therapy for Widespread Disease (polymetastatic) with Immunotherapy be a new paradigm?
Radiotherapy for metastatic Disease

The Clinical Problem of Metastasis

- Metastasis accounts for 85-90% of cancer mortality
- Regarded as widely disseminated and incurable in adult solid tumors
- Treated with systemic therapies: usually not curative
Overarching Clinical Question:

How can we cure more patients with metastatic disease?

Oligometastasis Hypotheses and Characteristics

- Metastasis represents a spectrum of disease: number of metastases/organisms involved/pace of progression
- Subsets of patients with limited (oligometastatic) disease are potentially curable with metastasis-directed therapies (SBRT)
- Cytoreduction with could synergize with systemic agents to improve outcomes

Spectrum of Metastatic Disease

Limited Spread (Oligometastasis) 1-5 Metastases

Widely Disseminated (Polymetastases)
Oligometastases exist and are common

Many claim to see them...

Oligometastatic Patients Exist...

Breast Cancer

<table>
<thead>
<tr>
<th>First Author</th>
<th>Phase</th>
<th>ER/PR (%)</th>
<th>HER2</th>
<th>< 2 Met sites (%)</th>
<th>< 4 Met Sites (%)</th>
<th>Notes</th>
<th>PFS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elmore 2008†</td>
<td>8</td>
<td>699</td>
<td>32</td>
<td>88</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosenberg 2007‡</td>
<td>88</td>
<td>810</td>
<td>73</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkov 2013§</td>
<td>8</td>
<td>58</td>
<td>77</td>
<td>33</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hurwitz 2015∥</td>
<td>95</td>
<td>14</td>
<td>54</td>
<td>14</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geyer 2013∥∥</td>
<td>404</td>
<td>31</td>
<td>51</td>
<td>31</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steller 2005⊥</td>
<td>513</td>
<td>175</td>
<td>45</td>
<td>98</td>
<td>97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See text for notes.

50% have <4 sites of metastases at diagnosis

Patients with oligometastases have **indolent disease:**

Metastatic Breast Cancer Patients

Multivariate Analysis of Prognostic Factors in Metastatic Breast Cancer

- 1.7% of 1,581 patients remained alive/complete remission >10 year
- 619 patients treated with anthracycline chemo
- Minimum f/u 4 years

| Table 7: **Regression Model: Making Initial vs. Remission Characteristics** |
|---|---|---|---|---|---|---|
| Characteristics | Regression Initial | Remission | T-stat | p-value | Odds | 95% CI |
| Number sites | 0.513 | -1.82 | -3.06 | 0.002 | 0.51 | 0.31-0.84 |
| Prognostic score | 0.60 | -1.29 | -1.34 | 0.176 | 1.84 | 0.92-3.69 |

Note: Parameters 0.1 < p < 0.25; rough estimate p < 0.1.
Patients with oligometastases have **indolent disease**: Metastatic Breast Cancer Patients

Multivariate Analysis of Prognostic Factors in Metastatic Breast Cancer

By N. Hortobagyi, T. J. Smith, S. S. Leather, J. D. Lembersky, D. J. Kaski, K. F. Yap, M. B. Buzdar, and G. A. Western

Table 7. Regression Model Relating Survival to Prognostic Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Regression Coefficient</th>
<th>Significant Level of Entry</th>
<th>Favorable</th>
<th>Unfavorable</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDH</td>
<td>0.360</td>
<td><0.01</td>
<td>0.89</td>
<td>1.70</td>
<td>2.0</td>
</tr>
<tr>
<td>Performance status</td>
<td>0.291</td>
<td><0.01</td>
<td>0.87</td>
<td>1.41</td>
<td>1.7</td>
</tr>
<tr>
<td>ER status</td>
<td>0.470</td>
<td><0.01</td>
<td>0.88</td>
<td>1.42</td>
<td>1.6</td>
</tr>
<tr>
<td>Prior anthracycline chemotherapy</td>
<td>0.320</td>
<td><0.01</td>
<td>0.76</td>
<td>1.60</td>
<td>1.8</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>0.198</td>
<td><0.01</td>
<td>0.80</td>
<td>1.43</td>
<td>1.7</td>
</tr>
<tr>
<td>Extent of disease</td>
<td>0.198</td>
<td><0.01</td>
<td>0.80</td>
<td>1.43</td>
<td>1.7</td>
</tr>
</tbody>
</table>

NOTE. Favorable risk was IDH < 0.25; performance status 0-1; long not treated; no prior anthracycline chemotherapy; < 80 performance status; < 24; prior anthracycline chemotherapy < 4; long interval treated; prior chemotherapy > 4; alkaline phosphatase < 250; and extent of disease > 20.

A Biologic Basis exists:

Metastatic disease evolves

Intravasation, Survival, Extravasation

1. Circulating tumor cell
2. Adhesion to blood vessel wall
3. Extravasation
4. Growth of secondary tumor

Caveat: known to be an inefficient process; not “everywhere, always”
Clonal heterogeneity of primary tumors and selection of secondary tumors -> types of metastases

Tumor heterogeneity leads to different clinical presentations

Darwinian Evolution: (Human) Metastasis-to-Metastasis

Intensified Treatments and integration with systemic therapy leads to improved outcomes
SPINE SBRT: Dose Matters (Single Fraction)

- **23-24Gy (Ablative)**
- **18-20Gy (Homeopathic)**

SBRT: Dose Matters (Lung mets)

NRG-BR001: A Phase 1 Study of Stereotactic Body Radiotherapy (SBRT) for the Treatment of Multiple Metastases

Steven J Chmura, MD, PhD; Kathryn A Winter, MS; Joseph K Salama, MD; Clifford Robinson, MD; Thomas M. Pisansky, MD; Virginia Borges, MD; Ram Parikh, PhD; Martha Makarjian, PhD; Swati S. Park, MD; Victor Gonzalez, MD; Yameen Hasan, MD; Jose Bazan, MD; Philip Wong, MD; Harold A Yoon, MD; Janet K. Horton, MD; Gregory N Gao, MD, PhD; Michael T Minas, MD, PhD; Erin Ruth Signorason, MD; Jennifer Maughan, MS; Julia White, MD

1 University of Chicago Comprehensive Cancer Center; 2 NRG Oncology Statistics and Data Management Center/ACR; 3 Duke University Medical Center; 4 Washington University in St. Louis; 5 Mayo Clinic; 6 University of Colorado – Anschutz Medical Campus; 7 University of Michigan; 8 University of Rochester Medical Center – University Campus; 9 Ohio State University Comprehensive Cancer Center; 10 Centre Hospitalier de l’Université de Montréal; 11 Heartland Cancer Research NCORP; 12 University of New Mexico Comprehensive Cancer Center; 13 University of Rochester; 14 Fox Chase Cancer Center

ASTRO Annual Meeting: 10/24/2018
Hypothesis: 3-4 or 2 anatomically close metastases can be safely treated with established SBRT doses.

Primary Objective: To determine the recommended SBRT dose for each of the metastatic locations.

Inclusion: Metastatic NSCLC, Breast, and Prostate patients.

Sample size: 42-84 patients.

NRG BR001: Treat Multiple Sites in the NCI BED > 100

<table>
<thead>
<tr>
<th>Metastatic Location</th>
<th>#Enrolled for DLT Assessment</th>
<th>#Evaluable for DLT Assessment</th>
<th>#DLTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone/Osseous Starting Dose</td>
<td>8</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Spinal/Paraspinal Starting Dose</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Peripheral Lung Starting Dose</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal pelvic Starting Dose</td>
<td>9</td>
<td>7†</td>
<td>0</td>
</tr>
<tr>
<td>Central lung Starting Dose</td>
<td>8</td>
<td>7†</td>
<td>0</td>
</tr>
<tr>
<td>Liver Starting Dose</td>
<td>9</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Mediastinal/Cervical Starting Dose</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

The DLT analysis was based on the first 6 of these 7 patients.

Protocol Specified DLTs - None

...But Do These Treatments Help?
Metachronous 5yr OS: 47.8%
Overall 5yr OS: 29.4%

Synchronous N1,N2 5yr OS: 13.8%

Metastasis-directed treatment and Survival
Radiation for (limited) metastatic disease

- Clinical presentation of Oligometastases is common, Biologic evidence exists that drives the clinical phenotype

- **SBRT Dose Matters:** BED >100 for control of oligometastases

- Randomized data ➔ with ablative techniques improves PFS and OS

- Ongoing trials will answer whether local ablative therapy with surgery or (real) SBRT improves OS in specific disease types

Beyond Oligo
The Good Fights infection
Kills Cancer
Causes Autoimmunity
Asthma
Heart Attacks

- Turns off Fire after infection gone
- Hijacked by Cancer

Innate and Adaptive Immunity

<table>
<thead>
<tr>
<th>Innate Immunity</th>
<th>Adaptive Immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulocytes (or polymorphonuclear leukocytes)</td>
<td>TYPE I INTERFERONS</td>
</tr>
<tr>
<td>neutrophil, eosinophil, basophil, monocyte</td>
<td>B cell, T cell</td>
</tr>
</tbody>
</table>

Not specific
No memory
Specific
Immunologic memory

Function of Adaptive Immunity

B cells
Function
Recognize circulating antigens
Make antibodies

T cells
Function
Recognize processed antigen
Make cytokines
CD4+ T cells: Make cytokines
CD8+ T cells: Kill abnormal cells
Tumor Immunology: Overview

MHC, major histocompatibility complex; TCR, T-cell receptor.

Courtesy of Scott Gettinger, MD; Yale.

TYPE 1 INTERFERONS

The Immunoediting Hypothesis: Shaping Tumor Development

Elimination
Equilibrium
Escape

Genetic instability/tumor heterogeneity
Immune selection

CTL
NK
T reg
T cyto
NKT
T reg
T reg
CTL
NK

T-Cell Exhaustion During Chronic Antigen Exposure

Wherry, 2011.
Science names “Cancer Immunotherapy” the “Breakthrough of the Year” for 2013.

This year marks a turning point in cancer, as long-sought efforts to unleash the immune system against tumors are paying off—even if the future remains a question mark.

© 2013, The American Association for the Advancement of Science.

Couzin-Frankel J. Cancer Immunotherapy. Science 342(6165) 2013; reprinted with permission from AAAS.

CTLA-4, cytotoxic T-lymphocyte–associated antigen 4, HVEM, herpesvirus entry mediator; PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein ligand 1.

Targeting The ICE: Immune Checkpoints in the Tumor Microenvironment

How Does Immunotherapy Work?

Tumor cells bind to T-cells to deactivate them

Immunotherapy drugs can block tumor cells from deactivating T-cells

PD-L1
Targeting PD-L1: Our best target so far

- Opdivo (pembrolizumab)
- Keytruda (nivo)
- Duravelamab

Immunotherapy (PD-L1) works

- Metastatic Melanoma
- Advanced NSCLC
- Advanced Urothelial Carcinoma
 - Balmus N Engl J Med 2017
- Advanced Renal Cell Carcinoma
 - Motzer N Engl J Med 2018

15%-20% responders

Immune System Background Summary

- Immune system balancing attack (Fire/Hot) with Suppression (Cold)
- Immune system has innate (nonspecific) and adaptive (specific) elements
- The persistence of cancer leads to immune dysfunction and Exhausting T-Cells that mount the response!
- Immune checkpoints and features of tumor microenvironment are targets for drug development
Does the Immune System Augment Stereotactic Body RadioTherapy (SBRT)?

Radiation-induced Equilibrium is a balance between tumor cell proliferation and T cell-mediated killing.

Radiation-induced dormancy can relapse years later.
Radiation-induced tumor equilibrium (RITE) is a balance between cell birth (Ki67 positive), and cell death (TUNEL positive), mediated principally by CD8+ T cells.

Depleting CD8 cells reduces SBRT Tumor Killing

SBRT Doses require CD8 activity!!!!!
Immune System augments SBRT

- Tumor cells and immune system evolve and escape
- CD8+ T cells contribute to SBRT tumor cell killing and can lead to lasting immunity

Opportunity: Immunotherapy to Improve Radiotherapy and local control

Can Radiotherapy Augment the immune response?

ABSCOPAL:
IN SITU VACCINATION HYPOTHESIS
Why is ABscopal so rare?

Given so many potential options, is there a way to rationally guide immunotherapy and radiation development?
Working model: immunobiology of T cell-inflamed and non-inflamed tumor microenvironment

- T cell-inflamed
 - CD8+ T cells, Type I IFN signature, high mutational burden, PD-1 positive, Chemotaxis
 - Most immunotherapy responders have this phenotype

- Non-T cell-inflamed
 - Low inflammatory signature, absent intratumoral CD8+ T cells
 - Immune escape, T cell exclusion

Most patients are this type

Radiation Converts tumors to Inflamed Phenotype: Therapeutic Potential?

- T cell-inflamed
 - Chemokines, CD8+ T cells, Type I IFN signature
 - Immune escape, inhibitory pathways

- Non-T cell-inflamed
 - Radiation
 - T cell infiltration

The Truth is Out There

If we can see it, we can Study it...
Abscopal Clinical Data and Design

Treat **one** site hope for Vaccine effect

Abscopal: SBRT overcomes resistance to Immunotherapy

Melanoma *progressing* on IPI

Single Site Progress

SBRT

Systemic Clearing

Randomized phase II study of anti-PD-1 alone vs. anti-PD-1+SBRT in patients with advanced NSCLC (n=64)

- Median PFS was 1.8 months in the PD-1 alone arm vs 6.4 months in the PD-1+SBRT arm

ASCO 2018 abstract

Theelen WC, et al. (Netherlands)
Barriers to a Better Response? … Opportunities

Heterogenous Tumor-Immune Microenvironments among Differentially growing metastases

Large Tumor Burden -> Poor αPD1 response
Who responds **BEST** to immunotherapy?

Immunologically **“Hot”** or **“Inflamed”** tumors

- Patients with small volume disease
- Tumors that are PDL-1 positive
- Tumor with high mutational burden

Hypothesis: **Potentiation** of Immunotherapy and combination w/RT

- **Potentiation** of immunotherapy and combination with XRT **produce T-cell inflamed phenotype “HOT”**
- **Cytoreduction** → **relieve** immune suppression and overcome heterogeneity

MOSART Clinical Data and Design
Treat **MANY** sites hope for Vaccine effect

iMOSART (SBRT+PEMBRO)

<table>
<thead>
<tr>
<th>Anatomic Cohort</th>
<th>Lung - Peripheral</th>
<th>Lung - Central</th>
<th>Med/Thoracic</th>
<th>Liver</th>
<th>Spinal</th>
<th>Osseous</th>
<th>Abd/Pelvic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sites with DLTs</td>
<td>1/12 (8.3%)</td>
<td>2/10 (20.0%)</td>
<td>1/10 (10.0%)</td>
<td>0/8</td>
<td>1/8</td>
<td>0/5</td>
<td>1/9</td>
<td>6/62 (9.7%)</td>
</tr>
</tbody>
</table>

- Median follow-up for toxicities: 5.5 months (IQR 3.3 - 8.1)
- 62 patients with at least 3 months of follow-up
- All 6 patients who experienced DLT had 2 lesions treated with RT
- 3/6 had both lesions in the same anatomic locations and 3/6 pts had lesions treated in separate anatomic locations
- No SBRT dose reductions

Treatment Related Severe Dose-Limiting Toxicity (DLTs) by Anatomic Cohort
Systemic Therapy Augments Radiotherapy?

IGRT not needed: Partial Tumor Radiation

- 17/68 patients (21 lesions) had at least one lesion larger than 65cc and least one imaging follow-up
- Median initial gross tumor volume (GTV)
 - Partially irradiated: 116.6cc (IQR 90.7-219.7cc)
 - Completely irradiated: 7.2cc (IQR 2.6-14.8cc)

Median coverage: 20% isodose line IQR 7%-51%
Results

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Complete-Rx (118 Mets)</th>
<th>Partial-Rx (21 Mets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated Metastasis Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdomen/Pelvis</td>
<td>17 (14.4%)</td>
<td>9 (42.9%)</td>
</tr>
<tr>
<td>Liver</td>
<td>12 (10.2%)</td>
<td>8 (38.1%)</td>
</tr>
<tr>
<td>Lung-Central</td>
<td>21 (17.4%)</td>
<td>2 (9.5%)</td>
</tr>
<tr>
<td>Lung-Peripheral</td>
<td>10 (25.6%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Mediastinum/Cervical</td>
<td>14 (11.9%)</td>
<td>1 (4.8%)</td>
</tr>
<tr>
<td>Osseous</td>
<td>10 (10.2%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Spinal</td>
<td>12 (10.2%)</td>
<td>3 (14.8%)</td>
</tr>
<tr>
<td>Largest Treated Tumor Volume (cubic cm³), Mean (SD)</td>
<td>12.8 (14.8)</td>
<td>157.6 (95.7)</td>
</tr>
<tr>
<td>Dose to OARs (Minimum BED$_{3}$), Mean (SD)</td>
<td>222.8 (93)</td>
<td>42.4 (59.3)</td>
</tr>
<tr>
<td>Dose to Tumor (Minimum BED$_{10}$), Mean (SD)</td>
<td>55.0 (35.3)</td>
<td>23.8 (25.8)</td>
</tr>
</tbody>
</table>

Results: Treated Metastasis Control (TMC)

- 1-yr TMC – 89.5%

- No difference between Complete-Rx vs Partial-Rx Despite:
 - V95% of 67.2% (Partial-Rx) vs 100% (Complete-Rx)
 - Minimum BED$_{10}$ of 23.8 Gy (Partial-Rx) vs 95.0 Gy (Complete-Rx)
Systemic Therapy Augmented by Radiotherapy?

ABscopal (non-irradiated) RECIST response

Clinical Benefit

ABscopal (distant) Response

ORR = 13.5%

No difference for Partial vs Complete Tumors

SBRT Response

OS = 18mo

SBRT Fail

OS = 3.5mo

Mixed

OS = 9mo
post-SBRT biopsies: Unsupervised 2-way hierarchical clustering ->
Innate + Adaptive Immunity, ACROSS histologies

• Type-1 Interferon
• Immune function
• DNA repair

Radio-immunotherapy Platform to test for specific Hypotheses

The RIT™ Pipeline
Conclusions

- SBRT may improve survival in Oligometastases with High Doses (BED >100)
- Best responders to immunotherapy (minority) have low disease low tumor burden, Type 1 INF PDL-1 positive (checkpoints), and high Tumor Mutational Burden
- SBRT modulates immune pathways through Type-1 Interferon, Innate and Adaptive immune function, and DNA repair
- SBRT may turn patients from "cold" to "hot" and respond to immunotherapy -> Immunotherapy may improve local control assuming some portion receives high BED (NRG BR003/BRO02/Lu002)
Acknowledgments

Dr. Weichselbaum
Dr. Salama
Dr. Al-Hallaq
Dr. Luke
Dr. Patel
University of Chicago Radiation Oncology Residents

END TRANSMISION