Immunotherapy Killed the IGRT Star: Integrating Radiotherapy Into Systemic Therapy for Metastatic Disease

Steven J. Chmura MD, PhD Associate Professor Director of Clinical and Translational Research University of Chicago

Disclaimer

 Spouse: Medical Oncologist & Medical Director for Oncology Products at Astellas Pharmaceutical

Reflexion Medical Systems

40 Minute Outline

- Expanding the role of radiotherapy for:

 Local therapy for *Limited* (Oligometastatic) Disease
- What is immunotherapy? A Primer
- Can Radiotherapy Enhance Immunotherapy?
 Local Therapy for *Widespread* Disease
- (polymetastatic) with Immunotherapy be a new paradigm?

Radiotherapy for metastatic Disease

The Clinical Problem of Metastasis

• Metastasis accounts for 85-90% of cancer mortality

e

e

• Regarded as widely disseminated and incurable in adult solid tumors

• Treated with systemic therapies: usually not curative

AAPM 2019 m 14

Overarching Clinical Question:

How can we cure more patients with metastatic disease?

8		AAPM 2019 JU 34-18

Oligometastasis Hypotheses and Characteristics

- Metastasis represents a spectrum of disease: <u>number of metastases/organs involved/pace</u> of progression
- Subsets of patients with limited (oligometastatic) disease are potentially curable with metastasis-directed therapies (SBRT)

e

Pubmed Results: Interest in Oligometastasis over time

50 40 30 Oligomets Pilot Study Started NRG BR001/2 Activated RANDOMIZED DATA 20 10 0 ۲ 1995 2005 2010 2015 2017 AAPM 2019

Pubmed Results: Interest in Oligometastasis over time

What have we learned?

U

Oligometastases exist and are common

Many claim to see them....

e

Oligometastatic Patients Exist... Breast Cancer

First Author	Phase	n	ER/PR + (%)	HER2+	\leq 2 Met sites (%)	\leq 4 Met Sites (%)	Arms	PFS (mo)
Albain 200854		599	32	-	57	91	1. Gem + Paclitaxel	9.89
							2. Paclitaxel	8.4
Bergh 201255		593	72	Pos	52	_	1 Sunitinib+ Docetaxel	8.6
							2. Docetaxel	8.3
Tawfik 201356		30	77	Neg	50	_	1. Vinorelbine, capecitabine	8.6
Jurvitz 201357	IIR	137	54	Pos	49.3	-	1. Trastuz + Docetaxel	9.2
							2. T-DM1	14.2
Gianni 2013 ⁵⁸	III AVEREL	424	51	Pos	50	_	1. Docetaxel+ Trastuz	13.7
							2. Docet + Tras + BEV	16.5
Sledge 200359	III E1193	739	45	_	49	_	1. Doxorubicin	6
acage 2005							2. Paclitaxel	6.3
							3. Doxorubicin + Paclitaxel	8.2
Time to failure. Nobreviations: DR/PI rastuzumab emtans	k, estrogen rec ine; Docet, do	eptor/pr	ogesterone recepto Tras, trastuzumato f	; met sites, EV, bevaciz	metastatic sites; PFS, proj umab.	gression-free survival; Pos, p	 Doxorubicin + Paclitaxel ositive; Neg, negative; Gem, gemcit. 	

50% have <4 sites of metastases at

e diagnosis States, e al Seniors Occolegy 200 APPM2019 III :

Patients with oligometastases have *indolent disease*: Metastatic Breast Cancer Patients Malitaviate Maylos & Progenite Factors In Metastatic Breast Cancer by G. H. Hundage, T. L. Lind, J. S. Light, C. D. Brunner, Y. A. Glain, R. J. Yap, A. U. Kalar,

- 1.7% of 1,581 patients remained alive/ complete remission >10 year
- 619 patients treated with anthracycline chemo
- Minimum f/u 4 years tak 1. Representer Maint la betrang Societad ta Petransmerer Classicativation
 The formation of the societad takener (Societad takener Societad tak

Patients with oligometastases have *indolent disease*: Metastatic Breast Cancer Patients Maltivariate Analysis of Prognostic Factors in Metastatic Breast Cancer by G. N. Hondago, T. L. Smit, S. L. Suit, S. C. Swenton, W. Y. Yoy, A. U. Isain, and G. Riberscher

		Significance . Level of Entry	Relative Risk		
Characteristics	Regression Coefficient		Favorable	Unfavorable	Ratio U/F
LDH	0.362	< 0.01	0.83	1.70	2.0
Performance status	0.281	< 0.01	0.81	1.41	1.7
Lung	0.470	< 0.01	0.88	1.42	1.6
Prior radiotherapy	0.302	< 0.01	0.76	1.40	1.8
Alkaline phosphatase	0.188	< 0.01	0.83	1.45	1.7
Extent of disease	0.154	< 0.01	0.80	1.26	1.6

Ş	AAPM 2019 m 14-18
	Hortobagyi, et al. JCO 1983 Vol 1 (12): 776

e

Metastatic disease evolves

Intravasation, Survival, Extravasation

Clonal heterogeneity of primary tumors and selection of secondary tumors -> types of metastases

Darwinian Evolution: (Human) Metastasis-to-Metastasis

e

e

Intensified Treatments and *integration* with systemic therapy leads to *Improved outcomes*

SPINE SBRT: Dose Matters (Single Fraction)

SBRT: Dose Matters (Lung mets)

NRG-BR001: A Phase 1 Study of Stereotactic Body Radiotherapy (SBRT) for the Treatment of Multiple Metastases

Steven J Chmura, MD, PhD¹, Kathryn A Wirter, MS², Joseph K Salama, MD³, Clifford Robinson, MD⁴, Thomas M. Pieansky, MD², Wirthia Borges, MD⁶, Hania Al-Haliaa, PhD⁷, Martha Matuszak, PhD⁷, Seen S Park, MD⁵, Victor Gorzalez, MD³, Philly Wong, MD⁵, Harold A Yoon, MD¹⁰, Janet K Horton, MD³, Gregory N Gan, MD PhD⁵, Michael T Miano, MD, PhD¹⁰, Elin Ruth Sigurdson, MD¹⁴, Jennifer Moughan, NB², Julia Vitte, MD⁹

University of Chicago Comprehensive Cancer Center,² NRC Octogo Statistics and Banagement Center/ARCR,² Duke University Medical Center,⁴ Washington University in St. Louis,² Mayo Chin,² University of Colorado – Anschut Medical Center, ² University of Michigan,² University of Actiona Medical Center – University Cancer, ² University of Comprehensive Cancer Center,² Center Possibilier de Université de Montheli,¹¹ Heartland Cancer Research NCORP,² University of New Mexico Center,² Center Scatter Research NCORP,² University of New Mexico Comprehensive Cancer Center,² Rochtester,⁴¹ Frei Chass Cancer Center

ASTRO Annual Meeting: 10/24/2018

Protocol Specified DLTs - None

Metastatic Location	#Enrolled for DLT Assessment	#Evaluable for DLT Assessment	#DLTs
Bone/Osseous Starting Dose	8	6	<mark>0</mark>
Spinal/Paraspinal Starting Dose	7	6	<mark>0</mark>
Peripheral Lung Starting Dose	7	6	0
Abdominal-pelvic Starting Dose	9	7†	<mark>0</mark>
Central lung Starting Dose	8	7*	<mark>0</mark>
Liver Starting Dose	9	5	0
Mediastinal/Cervical Starting Dose	7	6	<mark>0</mark>
*The DLT analysis	was based on the first 6 of	these 7 patients.	C

...But Do These Treatments Help?

۲

AAPM 2019 m ------

<section-header><section-header><section-header>

Radiation for (limited) metastatic disease

- Clinical presentation of Oligometastases is common, Biologic evidence exists that drives the clinical phenotype
- SBRT Dose Matters: BED >100 for control of oligometastases
- Randomized data ->with ablative techniques improves PFS and OS
- Ongoing trials will answer whether local ablative therapy with surgery or (real) SBRT improves
 OS in specific disease types

_

Innate and Adaptive Immunity

The Immunoediting Hypothesis: Shaping Tumor Development

T-Cell Exhaustion During Chronic Antigen Exposure

e

Science names "Cancer Immunotherapy" the "Breakthrough of the Year" for 2013.

Targeting The ICE: Immune Checkpoints in the Tumor Microenvironment

How Does Immunotherapy Work?

Immunotherapy (PD-L1) works

Immune System Background Summary

 Immune system balancing attack (Fire/Hot) with Suppression (Cold)

e

- Immune system has innate (nonspecific) and adaptive (specific) elements
- The persistence of cancer leads to immune dysfunction and Exhausting T-Cells that mount the response!
- Immune checkpoints and features of tumor microenviroment *are targets for drug development*

Does the Immune System Augment Stereotactic Body RadioTherapy (SBRT)?

Radiation-Induced Equilibrium Is a Balance between Tumor Cell Proliferation and T Cell–Mediated Killing

Post SE

۲

۲

e

RT 49 months relapse Post_SBRT 57 m

Post SBRT 2

Radiation-induced tumor equilibrium (RITE) is a balance between cell birth (Ki67 positive), and cell death (TUNEL positive), mediated principally by CD8* T cells.

U

Depleting CD8 cells reduces SBRT Tumor Killing

Depleting CD8 cells reduces SBRT Tumor Killing

Immune System augments SBRT

• Tumor cells and immune system evolve and escape

U

- CD8+ T cells Cells Contribute to SBRT tumor cell killing and can lead to lasting immunity
- Opportunity: Immunotherapy to Improve Radiotherapy and local control

AAPM 2019 # 14-16

Can Radiotherapy Augment the immune response?

Why is ABscopal so rare?

Given so many potential options, is there a way to rationally guide immunotherapy And radiation development?

U

Working model: immunobiology of T cell-inflamed and non-inflamed tumor microenvironment

Radiation Converts tumors to Inflamed Phenotype: Therapeutic Potential?

If we can see it, we can Study it...

Abscopal Clinical Data and Design Treat One site hope for Vaccine effect

Abscopal: SBRT overcomes resistance to Immunotherapy

Melanoma progressing on IPI

Single Site Progress

SBRT

Systemic Clearing

8

U

w et al. 2012. NEJM

Barriers to a Better Response? ... Opportunities

Heterogenous Tumor-Immune Microenvironments among Differentially growing metastases

e

Large Tumor Burden -> Poor α PD1 response

Disease Burden Impacts Response Figure 1.0 Probability of Survival 0.75 0.50 < 0.001 0.25 Tumor size Above 0.00 12 15 21 24 18 Time, months lumbers at risk Below median Above median 183 177 162 153 132 103 55 182 151 121 104 82 60 24 44 16 19 5 e Melanoma cohort of Keynote-001 Joseph et al. Presented at ASCO 2014

Who responds **BEST** to immunotherapy?

Immunologically "Hot" or "Inflamed" tumors

- Patients with small volume disease
- Tumors that are PDL-1 positive
- e Tumor with high mutational burden 🧠

Hypothesis: **Potentiation** of Immunotherapy and combination w/RT

- Potentiation of immunotherapy and combination with XRT produce T-cell inflamed phenotype "HOT"
- Cytoreduction → relieve immune suppression and overcome heterogeneity

AAPM 2019

© 2018 Ebavier, reprinted from Cancer Cell, Zappasoli et al. Emerging Concepts for Immune Developsine Blockedi-Based Combination Therapies. Cancer Cell 2018;33(581-58), with permission from Ellevier.

MOSART Clinical Data and Design Treat MANY sites hope for Vaccine effect AAPM 2019 # 34-18

iMOSART (SBRT+PEMBRO)

e

e

Systemic Therapy Augments Radiotherapy?

۲

e

IGRT not needed: Partial Tumor Radiation

- 17/68 patients (21 lesions) had at least one lesion larger than 65cc and least one imaging follow-up
- Median initial gross tumor volume (GTV)

 Partially irradiated: 116.6cc (IQR 90.7-219.7cc)
 - Completely irradiated: 7.2cc (IQR 2.6-14.8cc)

Median coverage: 20% isodose line IQR 7%-51%

Characteristic	Complete-Rx (118 Mets)	Partial-Rx (21 Mets)
Treated Metastasis Location		
Abdomen/Pelvis	17 (14.4%)	9 (42.9%)
Liver	12 (10.2%)	8 (38.1%)
Lung-Central	21 (17.8%)	2 (9.5%)
Lung-Peripheral	30 (25.4%)	0 (0.0%)
Mediastinum/Cervical	14 (11.9%)	1 (4.8%)
Osseous	12 (10.2%)	0 (0.0%)
Spinal	12 (10.2%)	1 (4.8%)
Largest Treated Tumor Volume (cubic ccs), Mean (SD)	12.8 (14.8)	157.6 (95.7)
Dose to OARs (Minimum BED ₃), Mean (SD)	222.8 (93)	42.4 (59.3)
Dose to Tumor (Minimum BED ₁₀), Mean (SD)	<mark>95.0 (35.3)</mark>	23.8 (25.8)

Results

Characteristic	Complete-Rx (118 Mets)	Partial-Rx (21 Mets)
Largest Treated Tumor Volume (cubic ccs), Mean (SD)	<mark>12.8 (14.8)</mark>	<mark>157.6 (95.7)</mark>
Dose to OARs (Minimum BED ₃), Mean (SD)	222.8 (93)	42.4 (59.3)
Dose to Tumor (Minimum BED ₁₀), Mean (SD)	95.0 (35.3)	<mark>23.8 (25.8)</mark>

۲

AAPM 2019

1

Results: Treated Metastasis Control (TMC)

- 1-yr TMC 89.5%
- No difference between Complete-Rx vs Partial-Rx Despite:
- V95% of 67.2% (Partial-Rx) vs 100% (Complete-Rx)
 Minimum BED₁₀ of 23.8 Gy (Partial-Rx) vs 95.0 Gy (Complete-Rx)

AAPM 2019 # 14-16

Systemic

Therapy

۲

Augmented by Radiotherapy?

post-SBRT biopsies: Unsupervised 2-way hierarchical clustering -> Innate + Adaptive Immunity, ACROSS histologies • Type-1 Interferon

	8 Disease Sites								
	Breast Cancer (M1			 NSCLC (M1) 	Small cell (M1)		Pancreases (M1)		
			Pre-op Rectal	Pre-op Esophogus	GBM recurrent		Merkel (M1)		
CodeName	Phase I	u/ III				LOI Submitted	Accepted		
MOSART	X, n=82			SBRT+@PD1 any solid turns	×	$ \rightarrow $			Complete
POSTER	X, n=110	x		SBRT+@PD1 any solid tume	×	$ \rightarrow $		2010 /	June 2017
BAD4BAT	X, n=42			SBRT+aPD1 >5cm tumors	-	$ \rightarrow $			Dec 2017
COSINR	X, n=81	x	Rand	omized SBRT+αPD1+αCTLA4 1*	line NSCLC	$ \rightarrow $			Nov 2017
Alliance 09156	X, n=100	x	F	andomized SBRT+αPD1 1# line	Merkel	\Longrightarrow			Jan 2018
NRG BR001/2	X, n=423	×	Rani	omized SBRT for Breast Cancer	Oligomets	\implies			Dec 2014
C4-MOSART	X, n=82		SBR	F+αPD1+ (41bb or CSF1r) any s	olid tumor	$ \rightarrow $			Mar 2018
ADVISE	X, n=123		Personalize	IO: αPD1+ 7 novel agents (SB Pd1 progression	RT 7 th agent) after	\Longrightarrow	\Rightarrow		Mar 2018
SBRT IDOx2	X, n=80			SBRT + dual IDO blockade		$ \rightarrow $			
HCC SBRT	X n=50			SBRT+aPD1+aCTLA4 HCC		$ \rightarrow $			Oct 2017
8								A.	PM 2019

Conclusions

- SBRT may improve survival in Oligometastases with High Doses (BED >100)
- Best responders to immunotherapy (minority) have low disease low tumor burden, Type 1 INF PDI-1 positive (checkpoints), and high Tumor Mutational Burden

- SBRT modulates immune pathways through Type-1 Interferon, Innate and Adaptive immune function, and DNA repair
- SBRT may turn patients from "cold" to "hot" and respond to immunotherapy -> Immunotherapy may improve local control assuming some portion receives high BED (NRG BR001/BR002/Lu002)

Acknowledgments

