Position Monitoring – Future Roadmap

Amit Sawant, PhD University of Maryland, School of Medicine

Disclosures

Ongoing Research Support from

- The National Institutes of Health (R01 CA169102, R01 CA202761)
- Varian Medical Systems
- · Vision RT Ltd.

Single, "reconstituted" average cycleCycle-to-cycle variations not captured

Subject to severe binning artifacts

Mean mag = 11.6 mm (range: 4.4 - 56.0 mm)

Amit Sawa versity of Maryland Baltimor

-

_

Impact of baseline drifts and amplitude variability

Maximum baseline drifts in the SI direction of >8 mm were observed in 10%, of 5-8 mm in 17% and of 2-5 mm in 35% of the treatment fractions. In LR direction, maximum baseline drifts of 5-8 mm were seen in 3% and of 2-5 mm in 31% of the treatment fractions. In AP direction, maximum baseline drifts of 5-8 mm were observed in 3% and of 2-5 mm in 69% of the treatment fractions. These baseline drifts can also be seen in Fig. S1.

Compared to the magnitude of baseline drifts, the magnitude of amplitude variability was smaller with a mean intrafraction variability of 1.3 ± 1.0 mm, 0.4 ± 0.4 mm and 0.6 ± 0.4 mm in the SI. LR and AP directions, respectively. An interfraction amplitude variability of 1.2 ± 0.9 mm, 0.4 ± 0.3 mm and 0.5 ± 0.5 mm was observed for SI, LR and AP direction, respectively.

Steiner et al., Radiotherapy and Oncol, 135, 2019

67 year old female with NSCLC in right mid-lobe

•1.5T GE Signa •b-SSFP, ½ NEX •TE/TR: 1.7/3.4 •Pixels: 2 × 3 mm² •Slice = 5 mm thick •FOV = 240 × 240 mm •Tacc = 0.165 s

Sawant et al., BioMed Research International, 2014

80 year old male with NSCLC in left upper lobe

•1.5T GE Signa •b-SSFP, ½ NEX •TE/TR: 1.7/3.4 •Pixels: 2.4 × 3.3 mm² •Slice = 5 mm thick •FOV = 240 × 240 mm² •Tase = 0.152 s

Sawant et al., BioMed Research International, 2014

3

Volumetric motion management rather than "single-point" targetbased motion management is ever more critical as we move towards increasingly potent forms of lung radiotherapy; e.g., SBRT, particle RT, dose escalation

Comprehensive Review of Motion Models

Medical Image Analysis Volume 17, Issue 1, January 2013, Pages 19-42

Survey Paper Respiratory motion models: A review

J.R. McClelland ^a A ≅, D.J. Hawkes ^a, T. Schaeffter ^{b, c}, A.P. King ^{b, c} **⊞ Show more**

https://doi.org/10.1016/j.media.2012.09.005

Four "Example" Motion Models

4DCT-based

- UCLA 5DCT model (Dan Low)
- U Maryland surface photogrammetry-based model

4D cone-beam CT-based

- UT Southwestern SMEIR (Jing Wang)
- UCLA McSART (John Lewis)

Amit Sav ersity of Maryland, Baltin UCLA 5DCT model

Lu et al, Med Phys 32, 2351 (2005)

Current Motion Model

- Assume linear in variables (breathing amplitude and rate)
- Data that build the model are:
 - Deformation maps between CT scans
 - Surrogates measured during CT scan acquisition

Validation: Comparing Model-generated Fluoro vs real Fluoro

Digitally reconstructed (model-generated) fluoroscopy

 For visible structures Dice coefficients were consistently > 0.8 (considered good) Amit Sawani rsity of Maryland, Baltimore

Simultaneous Motion Estimation and Image Reconstruction (SMEIR) for 4D-CBCT

kV Fluoroscopy using Truebeam OBI

Univ

8

Simultaneous Motion Estimation and Image Reconstruction (SMEIR) for 4D-CBCT

Motion compensated image reconstruction

UTSC

J. Dang et al and J. Wang, IJRBP, vol. 91, pp. 410-418 (2015)

Multi-organ Meshes to Model Sliding Motion

Incorporate Biomechanical Modeling into 4D-CBCT reconstruction

Lung Tumor Motion Simulation Error

FEM respiration simulation using predicted lung surface motion

as the boundary condition								
#Patient	TCM motion range AP (mm)	TCM motion range RL (mm)	TCM motion range SI (mm)	TCM Euclid. Range (mm)	TCM Sim. error AP(mm)	TCM Sim error RL (mm)	TCM Sim. error SI (mm)	TCM Euclid. Error (mm)
1	1.23	2.43	1.12	2.94	0.53	1.02	0.68	1.33
2	0.58	1.17	0.30	1.33	0.59	0.63	0.28	0.90
3	1.65	1.56	4.35	4.90	0.71	0.82	1.43	1.79
4	1.50	3.75	12.00	12.66	0.41	1.11	2.12	2.42
5	1.21	2.90	0.45	3.17	0.31	0.84	0.44	0.99
6	1.49	4.96	3.30	6.14	0.98	2.32	1.34	2.85
	1.38	0.87	1.50	2.21	0.36	0.78	0.51	0.99
8	1.07	1.66	5.70	6.03	0.40	0.46	1.78	1.88
9	0.85	0.70	5.40	5.51	0.39	0.52	1.21	1.37
10	0.68	2.53	14.23	14.46	0.34	1.01	2.22	2.46
Mean	1.16	2.25	4.83	Teheran	and Wat	ng 43 5493	-502Med P	bus (2016)

Motion Compensated Simultaneous Algebraic Reconstruction (McSART)

McSART workflow

Retrospective patient study

- Use retrospective 5DCT patient data as ground truth in McSART process
- 8 patients
- Truebeam geometry used, including SID, SAD, detector size, resolution

UCLA Health Radiation Oncology

First application to prospectively acquired patient data

Videos from first patient in coronal, sagittal, and axial planes

UCLA Health Radiation Oncology

CONCLUSION

- Volumetric motion models will become increasingly relevant and possible in the near future
- Barriers such as large image data handling, memory, processing power and rapidly becoming non-issues
- Monitoring the entire volume will create new treatment planning and delivery paradigms that focus more on normal tissue toxicity and post-RT function/QoL

Amit Sawant University of Maryland, Baltimore