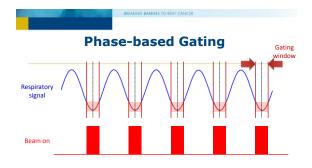


In-Room/Beam Adaptation State of the Art

Sonja Dieterich, Ph.D., MBA, FAAPM Professor					
	. 10.0550				
88EAEING	BARRIERS TO BEAT CANCER				
How Can We Manage	Posniration?				
now call we mailage	Respirations				
Compression					
Breath Hold					
• Gating					
Tracking					
 Couch motion 					
	UC DAVIS MEDICAL CENTER COMPREHENSIVE CANCER CENTER AUGUSTON ON COLOGY				
	COMPREHENSIVE CANCER CENTER RADIATION ONCOLOGY				
	D BARRIERS TO REAT CANCER				
SEALING	PRACTICES TO BLAT CAPACER				
Which are beam ada	ptations?				
- Compression					
• Breath Hold • Gating					
GatingTracking					
· Hacking					

UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
RADIATION ONCOLOGY

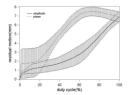
Couch motion


UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
RADIATION ONCOLOGY

BREAKING BARRIERS TO BEAT CAN

Respiratory Gating in Radiation Therapy

- Goal: reduce ITV margin volume
- · Ingredients:
 - Treatment delivery device with gating capability (e.g. Varian, Elekta, Viewray, ...)
 - 2x Respiratory monitoring technology (e.g. spirometry, optical ...)
 - · 4DCT capable simulator
 - Planning system capable of handling 4DCT
 - Time in schedule for longer Tx appointments


Amplitude-based Gating Respiratory signal Beam on

UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
RADIATION ONCOLOGY

BREAKING BARRIERS TO BEAT CANCER

Amplitude vs. Phase Gating for 4 Lung Patients

- Could be determined for each individual patient from the 4DCT
- No commercial software solution for this task yet (idea is from 2006!)

Jiang, Steve B. "Technical aspects of image-guided respiration-gated radiation therapy." *Medical Dosimetry* 31.2 (2006): 141-151.

UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
RADIATION ONCOLOGY

BREAKING BARRIERS TO BEAT CANCER

When Gating Does and Does not Work

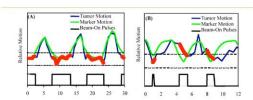
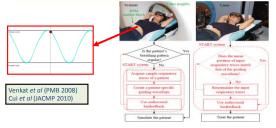


Figure 7. Comparison of cuternal matter block motion with internal motion of the clinical target olumn (CTV) for a pinetin with or in whose child mad for a patient with eightiment places thit. The respiratory gating thresholds are set using the external matter block motion. The beam-on pulses are highlighted in end over the internal CTV position, Reproduced from reference 227: Int Januari Onton Biol Phys, vol 48. "Clinical experience with a commercial respiratory gating system." C. R. Ramsey, D. D. Scaperoth, and D. C. Arwood, pp. 164-165. 2 (2000, with permission from Elsevier,

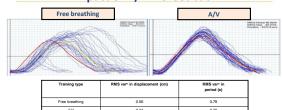

From AAPM TG-76

Organ/source	Respiratory signal	N patients (measurements)	Correlation range	Phase shift	Source
Diaphragm SI fluoroscopy	Abdominal displacement	5 (60)	0.82-0.95	Not observed	Vedam et al. ²⁰
Tumor and diaphragm, fluoroscopy	Abdominal displacement	43	0.41-0.94	Short delays observed	Ahn et al.103
Tumor, SI fluoroscopy	Spirometry & abdominal displacement	11 (23)	0.39-0.99	-0.65-0.5 s	Hoisak et al. ¹⁰⁴
Tumor, 3-D biplane radiography	Abdominal displacement	26	Respiratory waveform cycle agreed with SI and AP tumor motion	Principally within 0-0.3 s existence of >1.0 s	Tsunashima et al. ¹⁰⁸
Lung vessels, cine MRI	Abdominal displacement	4	SI 0.87 ± 0.23, AP 0.44 ± 0.27		Koch et al. 106
Lung tumor, respiration- correlated CT	Abdominal displacement	9 where tumor SI motion > 5 mm	0.74-0.98	<1 s 4 pts <0.5 s 5 pts	Mageras et al. 100
Lung tumor, SI respiration- correlated CT	Diaphragm position	12	0.73-0.96	<1 s 4 pts <0.5 s 5 pts	Mageras et al. 100

3-D: three-dimensional; AP: anterior-posterior; CT: computed tomography; MRI: magnetic resonance imaging

BREAKING BARRIERS TO BEAT CANCER

Audiovisual (A/V) Biofeedback



UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
ENDIATION ONCOLOGY

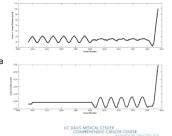
Venkat et al (PMB 2008)

BREAKING BARRIERS TO BEAT CANCER

Impact of A/V Biofeedback

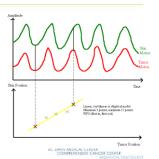
Motion Surrogates Non-Imaging: Strain belts · Non-Ionizing: Point tracking (RPM) Surface Imaging (Vision RT, C-Rad, ...) MRI (Viewray, Elekta) Ionizing (tracking fiducials or tumor): Orthogonal kV-kV Orthogonal kV-MV UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
PATRALION ONCOLOGY **Dosimetric & health outcome impact: Breast** Heart D_{mean}: 45% reduction (1.2 Gy) Excess cardiac mortality probability: Edvardsson, et al. Radiation Oncology 10.1 (2015): 1. UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
EADJATION ON Total time needed Beam On Time Gating takes 5.5× longer than no gating for a "typical" duty cycle Session Number Fox, Timothy, et al. "Free breathing gated delivery (FBGD) of lung radiation therapy: analysis of factors affecting clinical patient throughput." Lung Cancer 56.1 (2007): 69-75.

Gating Pros and Cons Reduces margins Dosimetric benefits No significant impact to outcomes (lower toxicity) Patient-friendly (no compression, breath hold etc) Increases room time by 80% and beam-on time by $5.5\times$


UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
PATRIATION ONCOLOGY

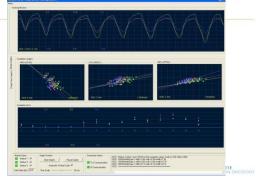
CyberKnife Synchrony: **Adapting the Linac**

The Crux: Skin-Tumor Correlation


- Not an issue of respiratory pattern regularity (Wong et al, TCRT December 2007)
- Suspect phase shift between surface and lung motion 4D-CT not necessarily a good predictor of motion at time of treatment (Minn et al, Am J Clin Oncol 2009)
 Sometimes, a good correlation model is hard to establish

BEFAUNG BARBERS TO BEAT CANCER

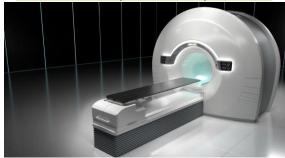
Principle of Hybrid Imaging for Tracking


- Continuous EXTERNAL imaging for respiratory motion
- Internal imaging at intervals
- Tumor and skin markers get correlated
- Skin motion predicts tumor motion
- Delivery device (robot, MLC) follows the tumor motion

Synchrony GUI

A technique feature based from

To the control of t



BREAKING BARRIERS TO BEAT CANCER

RefleXion: Biological Guidance & Beam Adaptation

BREAKING BARRIERS TO BEAT CANCER

The RefleXion machine requires 510(k) clearance and is not yet commercially available.

-

BREAKING BARRIERS TO BEAT CANCER

RefleXion Machine

5 major subsystems on a wide-bore

- 1 6MV LINAC
- 2 64-leaf binary MLC
- 3 Two 90° arcs of state-of-the-art PET detectors
- 4 16-slice kV fan-beam CT
- 5 MV X-ray detector
- 6 Gantry

UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
EADIATION ONCOLOGY

BREAKING BARRIERS TO BEAT CANCER

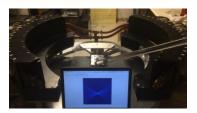
RefleXion Machine

Closed-ring gantry rotates at 60rpm

8

Binary MLC

- Novel pneumatic-springresonance design
- Leaves transition at 100 times/second allowing synchronization with LINAC pulsing and true digital delivery
- Beamlit profile 6.2mm x 10 or 20mm at isocenter
- Full field 40cm x 2cm at isocenter

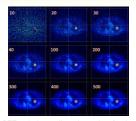


UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
RADIATION ONCOLOG

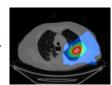
BREAKING BARRIERS TO BEAT CANCER

Integrated PET Detectors

- Dual 90° arcs of PET detectors integrated into the treatment plane
- Collects LOR data that generates instantaneous line-ofsight to the tumors



UC DAVIS MEDICAL CENTER
COMPREHENSIVE CANCER CENTER
EADIATION ONCOLOGY


7

BREAKING BARRIERS TO BEAT CANCER

BgRT principle: Just as a PET image can build up over time, BgRT builds the radiation dose over time using a real-time stream of PET emissions

PET emissions collected over time (each frame is 0.5 sec)

Radiation dose delivered