

#### **Disclosures**

Parts of our research and presented work in this session is supported and partially financially funded or supported by





1













## Considerations for measuring in an MRI-linac



Rayp

- Less clearance Equipment should be set up on the couch 130 (length) x 70 (diameter) cm Divergent from conventional field size : MRidian: 25.7 x 25.7 cm<sup>2</sup>, Unity: 57 x 22 cm<sup>2</sup> Maximum field size des not fit in standard of .
- .
- Mildain: 23.7 k 2.5.7 cm; Unity; 57 x 22 cm?
   Maiamin Tiel dis ze does not lin is sandard detectors or Water
  Different source to isocenter distance
   Mildain: 00 cm, Unity; 13.5 cm
  No collimator rotations
   Conventional beam alignment procedures cannot be used
   Ganty 0 / 180 measurements are linited due to high couch tra
  MR imaging / MV imaging
   No light field or (officially) lasers
   Setup of measurement equipment requires new methods
   Farlety
  Strong magnetic field:
   Mildiain: 0357 (= 7000 x farh magn. Field)
   Unity; 15 Teale (= 3000 x farh magn. Field)
   Unity; 15 Teale (= 3000 x farh magn. Field)
   Detectors behave differently in strong magnetic fields

NMA USA

Dose delivery a magnetic field Beam B • Photons are not affected by the magnetic field  $\odot$ F · Electron trajectory is changed by the Lorentz force Therefore the local dose deposition Scattered photon will change  $\sim$  $\vec{B}_{\odot}$ Incoming photon Compton scatter **XU** Compton electron

## Dose delivery a magnetic field





## Detector response in a high magnetic field



## Relative dosimetry using a water tank

.



#### Setup using projection images from on-board MV imager Alignment cannot rely on field edges

Large field size. Use of two detectors Less clearance means shorter PDDs

#### Detector response changes

EPOM changes in B0 field and photon beam directions Angular variation increases: large fields and off axis fields The water tank, motors etc influences the magnetic field

Continuous moving detectors induces Eddy currents

Location of reference chamber: Mobile structures affects the scattered electrons above the tank NM2

## Relative dosimetry using a water tank

- · Issues are known and can be corrected / prevented Perfect reference other detector arrays / film



100 Normalized dose (%)

20

40

NMA NUS

# **Detector arrays**

#### Sun Nuclear IC profiler

- Minimal changes to the design
- Power supply on extension
   Comparisons with/wo B-field
- Detector properties Detector properties
  - Short term reproducibility
  Dose response linearity
  - Saturation and recombination
  - Warm-up effects
  - Chamber orientations
  - Influence of ionization chamber shape

No. ICProfiler versus Gafchromic EBT2

Smit, K. et al. PMB 59 (2014)

#### **Detector arrays**

- PTW StarCheck maxi MR
  - Minimal changes to the design Power supply •

    - Power supply
       Network connection



NMA EU3

- Detector properties

  - Detector properties Short term reproducibility (no difference) Dose response linearity (no difference) Warm-up effects (no difference) Chamber orientations Rotational dependence Difference between AB and GT profiles (2.1% with B0, 0.4% wo B0) Saturation and recombination (no difference)

Perik, T.J. et al. PMB 63 (2018)

# **Detector arrays**

- Issues to consider
- Air-gaps around detectors
- Response differs between detectors

- Higher angular sensitivity Partially solvable by calibration MR-compatible versions has been improved •
- Full scatter condition cannot always be achieved

Detector geometry and alignment affects reading

•

- AB, GT and diagonal response differs
   Partially solvable by calibration
   Calibration difficult due to size of detector array
- Alignment difficult due to lack of collimator rotation - Used by the on-board EPID and MV beam

Hackett S.L. et al. MedPhys. 43 (2016) Perik, T.J. et al. PMB 63 (2018)



#### **Film dosimetry**

- EBT3 suitability in magnetic field
  - Very versatile
  - High spatial resolution, large dose range
  - Conversion of Monomers  $\rightarrow$  polymers (having a dipole moment) •
    - Magnetic field might influence
    - Polymerization process
       Orientation of polymers

#### Evaluating EBT3 properties in 0.35T field

- EBT3 dose response curves B0-field orientation influence ٠
- . .
- Real-time imaging influence

Courtesy to Daan Hoffmans (Amsterdam UMC)



## **EBT3 suitability in magnetic field** Dose response curves





**EBT3 suitability in magnetic field** B0-field orientation influence



## **GafChromic film – magnetic field effects**

|                                                                                                       | в (т)                                             | D (Gy)                                                    | Device                  | Change                       |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|-------------------------|------------------------------|
| Raaijmakers et al. (2007)                                                                             | 0.6/1.3                                           | 4                                                         | Linac                   | 1-4%                         |
| Reyhan et al. (2015)                                                                                  | 1.5                                               | 0-8                                                       | Linac*                  | 4%                           |
| Wen et al. (2016)                                                                                     | 1.5                                               | 1.18-4.74                                                 | Unity                   | No effect (2% accuracy)      |
| Reynoso et al. (2016)                                                                                 | 0.35                                              | 2-17.6                                                    | MRIdian                 | Up to 15%                    |
| Roed et al. (2017)                                                                                    | 1.5                                               | 2-8                                                       | Co-60                   | <2%                          |
| Barten et al. (2017)                                                                                  | 0.35                                              | 0-8                                                       | MRIdian                 | No effect                    |
| UMC U                                                                                                 | 0-1.5                                             | 0-3                                                       | Linac                   | No effect                    |
|                                                                                                       |                                                   | *not                                                      | irradiated in p         | presence of a magnetic field |
| nakers et al. 2007 (PMB, Vol. 52) R<br>n et al. 2015 (JACMP, Vol. 16) R<br>t al. 2016 (MP, Vol. 43) B | eynoso et al.<br>oed et al (20<br>arten et al (20 | 2016 (MP, Vol. 4<br>17), Estro 2017 P<br>017), Estro 2017 | 3)<br>O-0763<br>DC-0231 |                              |
|                                                                                                       |                                                   |                                                           |                         | Slide courtesy to Bram va    |



## Film processing (always convert to dose)



Andre Micke et al. MedPhys 2011



## Linac QA measurements Isocenter accuracy (spoke films)



van Zijp et al. PMB (2016)



<section-header><list-item><list-item><list-item>

# Linac QA measurements MLC-bank alignment and leaf position accuracy 1 adjacent stripes of known distance 1 im sandwiched in Cu 2 use simultaneously acquired EPID images to align film Image: Stripp and Stripp an

Sastre-Padro et al. ()

#### Linac QA measurements





#### **Linac QA measurements**

Beam alignment using congruence of opposed fields



# Beam commissioning data acquisition using film

- No flood possible in the MRI Easy to handle, quick setup •
- •
- . 2D data instead of 2 x 1D profile
- High resolution in film plane (penumbra) Complete data set per field size in a single shot (300 MU) PDD = 25 cm (Water tank range ~12.5 cm) .





## Beam commissioning data acquisition using film



- PTW RW3 slab phantom 30 x 30 x 30 cm<sup>3</sup> / 40 x 40 x 10 cm<sup>3</sup> EBT3 radiochromic film (20 x 25 cm<sup>2</sup>)
- SAD setup (SSD = SAD + 10 cm) Field size 1x1, 2x2, 5x5, 10x10 and 20x20 cm<sup>2</sup> Depths 1.0, 2.0, 5.0, 10.0 and 20.0 cm Axial film for High-res PDD, 3mm off-center
- .
- Output measurements with IC in RW3 at reference depth (SAD = SSD 10 cm)

#### Beam commissioning data acquisition using film Image processing film data



## Beam commissioning data acquisition using film Results 3D processed film data



No.





Beam commissioning data acquisition using film Results 3D processed film data (Film vs. Water tank)

#### **Film dosimetry**

- No significant magnetic field effects on film dosimetry
   Film OD2Dose calibration curves within B0 field are advised
- Use water (droplets!) to avoid any possible airgaps
- Use Cu plates to capture the secondary electrons
- On a Elekta Unity system isocenter coordinate can be transferred via the onboard EPID

NMA US



## Patient specific QA







#### **3D Detector arrays**

- Current MR compatible systems on the marker
  - Sun Nuclear Arc Check Scandidos Delta4
  - PTW Octavius 3D (rotates with the gantry angle)
- Perpendicular alignment to beam, potential use for linac QA Remove as many ferrous components as possible
- B-field effect on electrons can cause strange behaviour, especially at interfaces bet materials of different densities (e.g. air cavities of ion chambers).
- Default positioning at isocenter using frame
- no light field or lasers
   RF can be damaging to electronics. No MR image of device position. Off-axis positioning (accuracy less)
- NMA EU3

#### **3D Detector arrays**

Systems have been tested on

- Short term reproducibility Field size dependency Dose-linearity

.

- \_ Dose-rate dependency
- Angular dependency





2US Systems perform similarly in B0-field but generally needs specific re-calibration • Ellefson S.T. et al. JACMP (2017) Li H. et al. IJROBP (2015) Houweling A C et al. PMB 61 (2016) /ries J.H.W. de et al. PMB 63 (2018)

#### **3D Detector arrays**

.

- Most devices are developed for axial treatments
- The center of the device at isocenter
- Generally the high dose region
- · MRI-Linac treatments does not necessarily have target in the machine isocenter

  - Many "low dose contributions" to diodes
     Diodes have a individual angular sensitivity related to their individual orientation from the manufacturing process
- Two main aspects to consider
  - Behavior at low dose rates
  - Behavior at various gantry angles
- If device rotates with the gantry angle (PTW) then Eddy currents exists due to rotation of electronics in B-field





## Patient QA using Delta4





