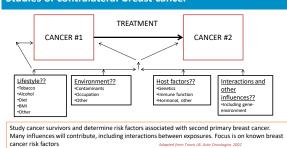
Genetic Radioepidemiology of Contralateral Breast Cancer: A WECARE Study Update

The Intersection of Radiobiology, Radioepidemiology, and Safety: Memorial Symposia for Jean St. Germain


2019 AAPM Annual Meeting San Antonio, TX

Jonine L. Bernstein, PHD Bernstej@mskcc.org

> Memorial Sloan Kettering Cancer Center

Goal: Demonstrate there are subgroups of women at increased risk of treatmentassociated contralateral breast cancer (CBC) by virtue of their genetic make-up

- Challenges of studying contralateral breast cancer
- WECARE Study overview
- WECARE Study results: rare candidate genes and common genetic variants (GWAS)
- Conclusion

Studies of contralateral breast cancer

Study	Size	First Cancer Dx	Second Cancer dx	Dosimetry /Agent	Genes Implicated
CCSS Mertens et al, 2004	650 Survivors	Any Childhood cancer	Various	No	XRCC1 GSTM1 GSTT1
Best et al, 2011	100 cases	Childhood HL	Various	No	PRDM1
CCSS + SJ-LIFE Morton et al, 2017	207 Cases 2,774 Controls	Any childhood cancer	Breast	Yes	PROX1 TAGLN RPS6KC1

Genetic risks of second primary cancers and treatment in adults, poorly studied

Study	Size	First Cancer Dx	Second Cancer dx	Dosimetry /Agent	Genes Implicated
CBC in Dutch Women Broeks et al, 2007	247 CBC Cases	Breast	Breast	No	BRCA1 BRCA2 CHEK2 ATM[Truncating]
Treatment-related AML Anderson et al, 2008	51 t-AML 89 Controls	Various	AML	No	NPM1
HNC treatment study Zhang et al, 2011	1,269 HN Cases	HNC	Various	No	P53 P73
WECARE Study					

WECARE Study one of the few specifically designed to examine joint effects of treatment and genetics in the etiology of breast cancer

Cases are women with contralateral breast cancer (CBC)

Controls are women with unilateral breast cancer (UBC)

Hypothesis
Women who are carriers of certain genetic mutations will be more susceptible to
treatment-, and especially radiation-, induced breast cancer than are non-carriers.
Bernstein et al, Br Ca Res 2004

Eligibility of the WECARE Study Cases and Controls

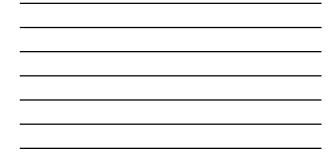
- CBC Cases (n = 1521)
- Diagnosed since 1/1/1985 with incident breast cancer
- Diagnosed since 1/1/1986 with contralateral breast cancer (CBC)
- One year or longer time between primaries
- < 55 at first primary dx
- No other cancer diagnosis

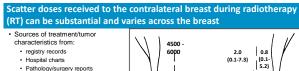
- UBC Controls (n = 2212)
- With unilateral breast cancer (UBC)
- Individually matched to cases on:
 Registry
 - Age
 - Dx date of first breast cancer
- Race
- No other cancer diagnosis

	cruited in two phases (WECARE I & data collection methods/protocols
WECARE I Study, 2001- 2004 (CBC=708, UBC=1399)	WECARE II Study, 2010 - 2013 (CBC=813, UBC=813)
Matching: 1:2 counter-matching	Matching: 1:1 matching
Recruitment: SEER (Seattle, LA, Iowa, Irvine) and Danish Cancer Society	Recruitment: SEER (Seattle, Iowa, Northern CA), Danish Cancer Society, and Toronto
Eligibility: • 1* br ca dx: 1/1/1985 and 1/1/2000 • ≥1 yr interval 1st & 2nd in situ/invasive (cases only)	Eligibility: 1 ^{att} br ca dx: 1/1/1990 and 1/1/2008 2 yr interval 1st & 2nd invasive (cases only)
Biospecimens : blood, cryopreserved lymphocytes, cell lines, tissue	Biospecimens: saliva, buccal cell, tissue
Mutation screening: ATM; CHEK2; PAIB2, BRCA1/2; GWAS 1M SNP5, Whole genome sequencing (WGS) Whole Exome Sequencing (WES)	Genotyping 30k custom select SNPs
	Other: Mammographic Density

Treatment for a first primary effects risk of developing CBC: however, protective effect of chemotherapy and tamoxifen may not persist

Treatment	Time since Dx (yrs)	RR*	95% CI
Chemo	1-4	0.6	0.5 - 0.8
	5-9	0.7	0.6 - 0.9
	≥10	0.9	0.7 - 1.3
Tamoxifen	1-4	0.7	0.5-0.9
	5-9	0.8	0.6-1.0
	≥10	0.9	0.7-1.3


* Adjusted for exact age at first breast cancer diagnosis, family history of breast cancer, histology, stage, and all treatments


Bertelsen et al, JNCI 2008; Langballe Br Ca Res 2016

Variability in efficacy of tamoxifen treatment may be due to CYP2D6 phenotype

Phenotype	Tamoxifen	Case	Control	RR*	95% Cl
Extensive	No	904	1190	1.0	
Metabolizer	Yes	386	676	0.63	0.5-0.8
Intermediate	No	88	130	1.0	
Metabolizer	Yes	58	77	0.9	0.6-1.6
Poor	No	57	21	1.0	
Metabolizer	Yes	98	32	1.2	0.6-2.4

Adjusted for exact age, are adjusted for age at menarche, number of full term pregnancies, age at menopause, family history, treatment (hormone, RT), histology, ER status, stage. *Brooks et al*, *BMC 2018*

(¢)

1.6 (0.2 -(0

Contralateral Breast: Range of Average Dose (Gy) per Quadrant

(0.1 · 2.4)

- Pathology/surgery reports
 Doctor office /mammography records
 Radiation oncology files

Missing Data

~ 7% patient records inadequate for dosimetry

~ 2% participants had no info

Treated Breast: Tumor Dose

Scatter dose from RT can be substantial 1.0-7.1 Gy, which is sufficient to result in mutations in oncogenes and tumor suppressor genes. Excess risk range -5.5-10.7 cases/104 woman-years/Gy Stovall, INT J RAD BIOL 2010

	Dose CB* (Gy)	Case	Control	RR***	95% C
Never RT		641	522	1.0	
Ever RT		880	1689	1.0	0.9-1.2
Average dose	0	632	510	1.0	
to the CB	0 < - 1.0	263	451	1.1	0.9-1.3
	≥ 1.0 (1-8.9)	621	1245	1.0	0.9-1.2
Location-specific	0	542	452	1.0	
dose to the CB	0 < - 1.0	435	807	1.1	0.9-1.3
	≥ 1.0 (1-9.3)	347	659	1.1	0.9-1.3

Risk of radiatio	on-associated	CBC is i	nversely	related	to age at	
exposure and	proportional t	o dose	(location	-specific	dose)	
Age/Latency	Dose ^a (Gy)	Case	Control	RR⁵	95% CI	_
	0	85	81	1.0		
< 40	0 < - 1.0	84	159	1.2	0.8-1.8	
5+yr latency	≥ 1.0 (1-7.3)	76	111	2.0	1.2-2.9	_
	0	124	96	1.0		
40-44	0 < - 1.0	105	202	1.1	0.7-1.5	
5+yr latency	≥ 1.0 (1-5.1)	74	145	0.9	0.6-1.3	_
	0	333	275	1.0		
45-54	0 < - 1.0	246	446	1.1	0.9-1.4	

Scatter radiation dose to the CB ***Adjusted for age at first diagnosis of breast cancer, age of menarche, family history of breast cancer, total number of full-term pregnancies, age at menopause, chemo/hormonal treatment, histology, and stage. Updated from Stovall, INT J RAD BIOL 2010

403

1.0

0.8-1.3

197

BRCA1/2 screening of 2107 WECARE Study participants reveals 181 carriers of deleterious mutations

113 unique known deleterious mutations
 57 on BRCA1

≥ 1.0 (1-9.3)

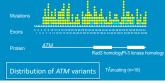
• 56 on BRCA2

5+yr latency

- 181 carriers of deleterious mutations
 - 73 UBC
 - 108 CBC
- 72 carriers of deleterious BRCA2
- 109 carriers of deleterious BRCA1
 Malone et al, JCO 2009

Menantial Stars Kettering Cancer Center

Carrier Status	Case	Control	RR	95% CL
No BRCA	597	1325	1.0	
BRCA1	67	42	4.5	2.8 - 7.1
BRCA2	41	31	3.4	2.0 - 5.8
RCA1/2	108	73	4.0	2.8 - 5.7
<40	59	30	7.2	3.9 - 13.4
40-54	49	43	2.7	1.7 - 4.5


No evidence that risk of CBC among *BRCA1/2* Carriers is modified by radiation exposure

Carrier Status	Dose (Gy)	Case	Control	RR*	95% C
No BRCA	No	256	223	1.0	
	0<1.0	133	508	1.0	0.8-1.3
	≥1.0	118	406	1.2	0.9-1.6
BRCA1/2	No	40	9	1.0	
	0<1.0	35	27	1.9	0.7-4.6
	≥1.0	21	26	1.1	0.4-2.6

Adjusted for exact age, are adjusted for age at menarche, number of full term pregnancies, age at menopause, family history, treatment (chemo, hormone), histology, stage. Bernstein et al. Eur J Cancer, 2013

ATM mutation screening in 2192 WECARE Study participants identified 242 unique variants; most rare (% ants

Fotal 35 610 1120 1100 1100 120 120 Frequency of ATM variants

 Concernor et al. Can vez coue
 ATM Mutation screening results:
 Concernor et al. Can vez coue
 Distribution strongly skewed towards rare variants: 15 variants had minor allele frequency >1%
 Distribution strongly skewed towards rare variants: 10 archited to cause an amino >50% of the variants each occurred in only a single subject: 103 predicted to cause an amino acid change; 18 distinct truncating mutations in 21 patients (A-T causing)

Autation Classification	Cases	Controls	RR ^b (95% Cl)
/ariant Broadly Classified			
Wildtype	223	418	1.0
Silent	78	134	1.1 (0.8-1.6)
Missense	68	113	1.2 (0.8-1.8)
Splicing	4	14	0.7 (0.2-2.4)
Truncation	11	6	2.8 (0.9-8.9)
Common ^a	308	655	0.8 (0.6-1.0)
Clinical Classification ^c			
Wildtype	223	418	1.0
Pathogenic/likely	18	16	1.9 (0.9-3.6)
Rare missense	39	56	1.5 (0.9-2.5)

ATM Status	Dose (Gy)	Case	Control	RR ^a (95% Cl)
Variants Broadly Classified				
Wildtype	0	112	72	1.0
	0<1.0	57	177	1.0 (0.7-1.6)
	≥1.0	54	169	1.1 (0.7-1.7)
Pathogenic/likely	0	8	5	1.0
	0<1.0	5	5	1.6 (0.4-7.0)
	≥1.0	5	6	1.7 (.06-4.8)
Rare Missense	0	26	30	1.0
	0<1.0	21	45	2.7 (1.2-6.4)
	≥1.0	21	38	3.3 (1.4-8.0)
SIFT Missense Classification	ı			
Tolerated	0	12	16	1.0
	0<1.0	9	27	1.6 (0.5-5.2)
	≥1.0	10	23	1.8 (0.6-5.8)
Deleterious	0	14	14	1.0
	0<1.0	12	17	5.3 (1.6-17.3
	≥1.0	11	15	5.8 (1.8-19.0

Risk is further increased among youngest exposed ATM carriers

Age/SIFT Score	RT	Case	Control	RR (95% CI)
45 years				
Tolerated	No	7	3	1.0
	Yes	9	25	0.4 (0.1-2.4)
Deleterious	No	5	10	1.0
	Yes	10	16	10.4 (2.3-47.2)
≥45 years				
Tolerated	No	10	14	1.0
	Yes	10	30	1.9 (0.6-6.2)
Deleterious	No	9	5	1.0
	Yes	15	25	2.4 (0.6-9.5)

_				
_				

GRS approach examining for (published) SNPS in NHEJ pathway known to be associated with radiation

- Chose top 69 literature based SNPs from the 7 genes in NHEJ pathway
 (DCLRE1C, LIG4, NHEJ1, PRKDC, XRCC4, XRCC5, XRCC6)
- Of these, 24 were excluded due to strong disequilibrium (r^2 > 0.5) with others in the pathway.
- For an initial pass at risk, we used directionality from WECARE main effect (vs published)
- Number of alleles across all NHEJ SNPs were summed. Dichotomized score at median based on all women.

Watt et al, submitted

Menerial Som Kettering Cancer Center

Level	RT GRS Median	Dose (Gy)	Case	Control	RR	95%CI	Р	Ptren
		0	65	74	Ref			
	Below (36-58)	0.01-<1	46	111	0.8	0.4-1.7	0.64	
	(38-38) Above (59-75)	1+	37	92	1.1	0.5-2.3	0.86	
<40		0	58	38	1.6	0.8-3.0	0.15	<0.000
		0.01-<1	32	54	1.9	1.0-3.7	0.06	
	(55-75)	1+	46	42	4.4	2.3-8.6	<0.0001	
	Below	0	39	45	Ref			
	(36-58)	0.01-<1	31	59	1.4	0.6-3.2	0.47	
<40, 5+ yrs	(30-38)	1+	26	49	1.6	0.6-4.1	0.31	0.0009
Latency	Above	0	33	26	1.3	0.6-2.9	0.45	0.0005
	(59-75)	0.01-<1	17	29	1.8	0.8-4.2	0.18	
	(55 75)	1+	28	19	5.5	2.2-13.6	0.0002	

24% of radiation-associated CBC among young women exposed to ≥ 1Gy of radiation can be attributable to SNPs in the NHEJ pathway.

Age/Latency	Dose * (Gy)	Case	Control	RR***	95% CI
	0	85	81	1.0	
< 40	0 < - 1.0	84	159	1.2	0.8-1.8
5+yr latency	≥ 1.0 (1-7.3)	76	111	2.0	1.2-2.9
	0	124	96	1.0	Population
40-44	0 < - 1.0	105	202	1.1	attributable risk
5+yr latency	≥ 1.0 (1-5.1)	74	145	0.9	due to NHEJ
	0	333	275	1.0	GRS and dose is
45-54	0 < - 1.0	246	446	1.1	24%
5+yr latency	≥ 1.0 (1-9.3)	197	403	1.0	0.8-1.3

Scatter radiation dose to the CB ***Adjusted for age at first diagnosis of breast cancer, age of menarche, family history of breast cancer, total number of full-term pregnancies, age at menopause, chemo/hormonal treatment, histology, and stage.

Summary: There appear to be subgroups of women at increased risk of treatment-associated CBC by virtue of their genetic make-up

- · Especially evidence of radiation-sensitive sub-group of young women with breast cancer (eg <40, 5+ latency) who carry genetic factors that may explain excess risk.
- · Risks associated with rare genetic factors are relatively high, but only count for <3-4% the total population
- · Common genetic factors may account for a substantial amount of risk, among subgroups.

Further studies are needed to identify women who are particularly susceptible to CBC due to genetic host factors, exposures or a combination

Acknowledgements: WECARE Study Collaborative Group

CARACTERISTIC CONTRACT SUBJECT STATES CONTRACT SUBJECT STATES CONTRACT SUBJECT SUBJEC

Menantial Shara Kettering Cancer Center