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Outline of talk

e Cardiac Sparing whole lung IMRT (CS-WL-IMRT)
e Rationale
e [nitial results and data from R21

e CS-WL-IMRT with thyroid, breast-sparing combined with addition of
flank or whole abdomen field (Modified CS-WL-IMRT)

e Comparison of DVH’s
e Adaptive planning- DIR, auto contouring and re-planning
e Al in Radiation Oncology



Cardiac sparing whole lung IMRT (CS-WL-
IMRT)

e Whole lung Irradiation (WLI) has been widely used in the
management of lung metastases for Wilms tumor, Ewing Sarcoma and
rhabdomyosarcoma.

e Cardiac failure is an important late effect observed in childhood
cancer survivors after WLI and doxorubicin.

e Rationale
e Prove superior dosimetric coverage for WLI
e Spare heart from high doses of radiation



CT Simulation

* Vac-loc with arms up or down for immobilization
* Neck rest or aquaplast mask

e Anesthesia administered ( <= 4years of age)

e First CT was a non-contrast scan (2-3mm slices)

e Second CT was a contrast scan
e Help delineate cardiac anatomy

 All patients underwent 4D CT simulation



Target and OAR definition

e CTV = Maximum Lung Expansion (MLE) in 4D scan
e MLE-CTV = CTV+ 5mm
e PTV = MLE-CTV + 5mm

e Expanded to include entire vertebrae and mediastinum LNs

* OAR

e Heart and chambers
* Breast tissue

e Thyroid

e kidneys



Treatment Planning

* Prescription
e 12Gy/1.5Gy — Wilms
» 15gy/1.5Gy — others

* Target coverage
* 95% of PTV to receive 95% of prescription dose (~1000- 5000cc)
e 105% of prescription dose <=2% of PTV volume
* 110% of prescription dose <= 1% of PTV volume

e Max dose
e Cord-<107%
e Heart, liver - <110%

e Beams

* Step and Shoot or Sliding window
* 9 beams — equally spaced
s VMAT






DVH for Heart, RV and LV
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Average Dvh data from in-house study for 20 patients



Normalized Volume (%)

DVH Heart and Left Ventricle, Myocardium
and RV

Average Lt Ventricle DVH

Average Heart DVH Fig. 3

Fig. 2
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20 patients; multiple institutions- R21 Study



DVH for Myocardium and Right Ventricle

Fig. 5 )
Fig. 4 Average Rt Ventricle DVH
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20 patients; multiple institutions- R21 Study



Table 1.

Comparison of 4-dimensional cardian sparing IMRT and 3-dimensional standard

whole lung irradiation to the Heart, Ventricles, Atria, Liver, Thyroid, Coronaries and Myocardium

V50 V67 V83
Normal tissue IMRT AP-PA  P-wolue IMRT AP-PA  P-volue IMRT AP-PA  P-volue IMRT
Heart Mean 9% (92) 100.00%  0.0083 85% (80)  100% <0001  65%(64) 100% <0001  39% (40)
sD 54 08 95 13 121 22 155
v Mean 95% (95)  100% 0.006 82% (83)  100% <0001  61%(65) 100% <0001  33%/(38)
sD 78 0 135 0.2 15.2 05 15.9
RV Mean 91% (81)  100% 0.002 69% (58)  99% <0001  42%(37) 99% <0001  18%(17)
sD 10.8 16 15.2 26 12.7 4 8.9
LA Mean 99% (100)  100% 0.36 98% (100) 100% 0.036 87% (88) 0.0002  55%(60)
sD 0.4 02 38 11 123 25 223
RA Mean 99% (100) 99% 0.78 97%(98)  100% 0.009 86% (86) <0001  57%(60)
sD 0.4 07 33 13 105 225
LCA Mean 99% 100% 0.33 98% 100% 0.051 91% 0.0008 66%
sD 1.1 0 45 0 95 25.1
RCA Mean 100% 100% NA 98% 100% 0.025 88% <.0001 53%
sD 0 0 35 13 99 209
Liver Mean 55% (56)  54% 0.88 48% (47)  51% 0.47 39% (31) 0.025 27% (17)
sD 114 14 11.2 14 105 9.7
Thyroid Mean 44% (50)  33% 0.27 33% (37)  28% 0.61 20% (26) 0.72 6% (17)
sD 325 331 31 313 244 8.5
Myocardium  Mean 94% (97)  100% 0.05 80% (85)  100% <0001  59%(73) <0001  32%(54
sD 74 0 -

**% Data in paranthesis indicate the values from our initial in-house study®****




f‘rrWhole Abdomen v/s CS-IMRT

Table 2. Comparison of C5-IMRT and Modified CS-IMRT+ WA for
Heart, Ventricles, Atria, Thyroid, Coronaries, Breast and Myocardium
V50 V67 Va3 Va5
Normal C3- Mod- £ Cs- Mod- - CS- Mod- P Cs- Mod- P-
tissue IMRT  CSIMRT+WA  volue | IMRT CSIMRT+WA volue | IMRT CSIMRT+WA  volue | IMRT  CSIMRT+WA  valve
Heart Mean 93% 98% 0.17 83% 86% 0.55 65% 68% 0.22 35% 43% 0.02
SD 7.95 5.04 12 10 9.4 10 8.14 8.2
LV Mean a2% 97% 0.26 82% 85% 0.5 63% 67% 0.4 | 36% 44% 0.1
sD 9.1 5.20 13.3 11.0 11 12 10.4 12
RV Mean 87% 99% 0.26 72% 78% 0.6 42% 47% 0.26 15% 21% 0.08
SD 16.7 0.28 24.2 20 16.4 17 11 13
LA Mean 99% 949% 0.35 96% a7% 0.62 | 86% 88% 0.57 | 3%% 40% 0.2
D 1.2 0.51 5.57 3.5 13.5 11 18.2 19
RA Mean 99% 99% 0.3 97% 98% 0.87 88% 89% 0.82 53% 57% 0.06
sD 0.71 1.8 4 3.1 Q.7 8.7 10.5 20
LCA Mean 96% 99% 0.16 93% 94% 0.79 79% 21% 0.65 57% 61% 0.5
sD 9.6 2.1 11.2 9.5 12.8 13 14 11
RCA Mean 99% 99% 0.63 97% 97% 0.63 88% 89% 0.45 49% 51% 0.5
sD 1.79 1.4 5.3 4.8 8.7 9.4 16 16
Myocardium  Mean 93% 97% 0.23 8% 86% 0.5 67% 1% 0.29 46% 56% 0.04
sD 8.5 4.6 10.2 8.6 7.5 8 8.8 12
C5- Mod- P-
Gy IMRT  CSIMRT+WA  volue
Breast Mean 10 5 0.0002
sD 1.1 1.1
Thyroid Mean 5 2 0.006
sD 2.6 1.5




Adaptive Re-plan Off-line Workflow

Original CT

L New CT

DIR- transfer contours from
original CT to New CT

Check DIR
and contours

Copy original
L RTplan
L Re-optimize old plan for
new volumes

L Physician review,

QA and ready to Tx
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Adaptive Replan- Conclusions

* Improves throughput
e Improves efficiency and safety
e Still requires time commitment from staff (Physicians and Physics)

e Limitations
e Limited soft tissue details from CBCT
e GPU based calculation could help with calculation time
e Currently true “ON-LINE” adaptive only done with MR-Linac



Al In Radiation Oncology

* Image segmentation -Contouring — OAR and PTV
* Dose optimization

e Clinical decision making

e Outcome prediction



Segmentation methods (Auto contouring)

* Prior knowledge
e Atlas based segmentation
e Single or multi-atlas

 Model based segmentation
e Statistical shape models (SSM) or Statistical appearance models (SAM)

 Machine learning based segmentation
* Automatic detection and classification of tissues
* Great for classification, detection and pattern recognition
e Often combined with Atlas based or shape model segmentation

* Non- prior knowledge
e Segmentation based on image voxel intensities (Lung, bone etc)



050902-10

Sharp ef al.: Perspectives on automated image segmentation for radiotherapy

050902-10

TagBLE Il. Commercial software tools for automated medical image segmentation (F = female; H and N = head and neck; M = male TPS = treatment planning

system).

Supplier Product name Method Included atlases Integrated with TP'3 Reference

Accuray MultiPlan 5.0 Atlas-based model-based Brain, M pelvis Yes Reference 101

BrainLab iPlan Atlas-based Brain, H and N.M pelvis, spine, Yes Reference 102
thorax

Dosisoft IMAgo Atlas-based Brain, H and N Yes Reference 103

Elekta ABAS 2.01 Atlas-based model-based H And N. M pelvis Mo Reference 14

MIM software MIM Maestro 6+ Atlas-based Hand N Mo Reference 104

Mirada RTx 1.4, Workflow box Atlas-based Ano-rectal, Breast, H and N, Mo Reference 105
F pelvis, M pelvis, thorax

OSL OnQ RTS Altas-based H and M, M pelvis, thorax No Reference 106

Philips SPICE 9.8 Atlas-based model-based Abdomen, H and N, pelvis, Yes Reference 13
Thorax

RaySearch RayStation 4.0 Atlas-based model-based Abdomen, H and N, F pelvis, Yes Reference 107
M pelvis, thorax

Warian Smart Segmentation Atlas-based H and N, M Pelvis, thorax Yes Reference 108

Velocity Velocity Al 3.0.1 Atlas-based Brain, H and N, F pelvis, No Reference 58

M pelvis




Table 1. Relevant publications on machine learning appreaches to radiotherapy target delineation. Abbreviations: organ at risk (OAR), computed
tomography (CT), Dice similarity coefficient (DSC), magnetic resonance imaging (MRI), clinical target volume (CTV).

Cancer Machine Target Radiotherapy Number
Publication Site Learning Volume Flanning of Validation Qutcome and Important Features
Method Delineation Modality Patients
Compared against manual 19 out of 21 OAR surface DSC scores less than
Head Dee contours by senior radiographers 5% deviation when compared to clinician manual
Nikolov S [32} ° 0AR cT 663 ours by raciearap _ e _
and neck Learning adjudicated by senior consultant  conftours. Did not achieved target for brainstem
clinical oncologist and right lens
Compared against manual
. ) Head Deep ¢ g o Mean DSC 0.85. Good agreement when
Li G [37] ) Tumour MRI 29 contours by consultant clinical
and neck Learning ) compared to manual contours
oncologists
Median DSC 0.81. Good agreement when
Cardenas CE Head Deep ) ) Compared against manual - o )
) High risk CTV CT 52 o compared to manual contours by clinicians with
[38] and neck Learning contours by clinicians )
only minor or no change
) Mean DSC 0.78. Once validated was used in
M IR Head Machi Compared against manual linical setti d tively tested with
cCarro ea achine clinical setting and prospectively tested wil
! ! ) OAR CT 128 cantours by consultant clinical . F ) p_ v
[39] and neck Learning ) accuracy of 63%. 50% of auto-contours were
oncologist )
used without changes
. Auto-contours edited by Edited CTV DSC 0.87. Mean clinician time
Speight R [40] Head Machine ™ T 15 linici d inst d by 112 mi I h d
ei C C clinicians compared agains saved by min per plan when compared to
Pelg 40l and neck Learning P C ! pere ¢
manual contours by clinician manual contours
Machin Compared against manual 3 phases of irial. Mean DSC 0.889. Good
W e
Martin S [41] Prostaie Learning Tumour MRI 15 contours by 5 clinicians of agreement with clinician contours requiring
varying experience minimal changes. Time saved in all cases
_ Compared against manual Median DSC 0.57 and median time saved by
Lustherg Deep . ) . ) )
[42] Lung Learning OAR CT 20 contours by a single radiotherapy  7%%. Saved time in lung and spinal cord
technician contouring but not for left lung and oesophagus
. ) DSC more than 0.70. Good agreement with
Machine Compared against manual o
Bell LR [43] Breast ) Tumaour CT 28 L clinician manual contours. Coverage agreement
Learning contours by 8 clinicians

poorest towards heart border structures

Assessing the Role of Artificial Intelligence (Al) in Clinical Oncology: Utility
of Machine Learning in Radiotherapy Target Volume Delineation

lan S. Boon 1." &, Tracy P. T. Au Yong 2 &= and Cheng S. Boon 3 &



Challenges

e Heterogeneous data sets

* Image quality (Lack of soft tissue information, Resolution, slice
thickness, FOV, low SNR)

e Organ motion/ filling
e Change in organ due to tumor burden (use prior dataset info)
* Multiple image acquisition parameters (MRI)

e Solutions

e Consensus definition of anatomical structure boundaries (RTOG 0522- 111
patients)
e Train algorithm on RTOG consensus data set to develop multi-atlas algorithms



Auto segmentation- Conclusions

e Shows promise in automated contour generation

* Need to improve on accuracy, multiple sites, robustness and
reproducibility

* Need well curated data sets to train Al
* Develop quality metrics to assess validity



Automated planning

e AutoPlan
 Knowledge based planning
e Multicriteria Optimization



Treatment Planning - Deep Learning

Automatic treatment planning based on three-dimensional dose distribution
predicted from deep learning technique

Jiawei Fan* and Jiazhou Wang*
Depariment of Radiation Oncology, Fudan Universiiy Shanghai Cancer Center, Shanghai 200032, China
Depariment of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China

Zhi Chen*

Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
Department of Oncology, Shanghai Medical College Fudan University, Shanghai 200032, China
Depariment of Medical Physics, Shanghai Proion and Heavy lon Center, Shanghai 201321, China

o 2o s o

e o bt Gt e e A feasibility study for predicting

Ko R s eosn: optimal radiation therapy dose
_distributions of prostate cancer
_patients from patient anatomy

“using deep learning

Dan Nguyen(, Troy Long, Xun Jia, Weiguo Lu, Xuejun Gu({}, Zohaib Igbal & Steve Jiang



e Al in Radiation Oncology has great potential in
* Auto segmentation
e Treatment Planning
e Adaptive treatment planning



