DICOM EFFORTS TO IMPROVE CYBERSECURITY

Lawrence Tarbox, Ph.D.
University of Arkansas for Medical Sciences
DICOM Standards Committee and WG 14, 23, & 29 User Co-chair

SECURITY REQUIRES PLANNING

- Set policies
- Implement controls
 - Procedural – what people should do
 - Technological – what machines should do
 - Physical – the environment in which people and machines operate
- Educate
- Evaluate

SOURCES OF GUIDANCE - NIST

- National Institute of Standards and Technology (NIST)
 - Points to lots of other documents from multiple sources, not just NIST documents
 - Lots of procedures, probably overkill, but one possible view of 'best practices'. Though focused on government systems, lots of good ideas.

SOURCES OF GUIDANCE

- National Security Agency | Central Security Service
 - Multiple guidance and advisory documents
- Guidelines from other countries, trade organizations
- Joint Security and Privacy Committee (NEMA, COCIR, JIRA)
- Books
- Online guides
- Consultants, etc.

PLANS VARY

- Different organizations assess and mitigate risks differently
- Responsibilities vary
- Staff size varies
 - Typically one person has overall responsibility, for example
 - Chief Information Officer (CIO)
 - Chief Information Security Officer (CISO)
- Security Plans are necessary but outside the scope of DICOM
- DICOM has features that can be call upon by security plans, primarily as technological controls
DICOM SECURITY FEATURES

- Protect data at rest
- Digital Signatures
- Attribute Confidential, including de-identification
- Media Storage Security
- Protect data in transit, including node authentication
- User credentialing (optional part of Association Negotiation or session establishment)
- Audit logging

PROTECTING DATA AT REST

- Digital Signatures
- Persistent integrity check (tamper detection)
- Identifies users or devices that handled the object, with optional secure timestamp
- Selective Encryption or De-identification
- Persistent privacy protection
- Hide sensitive Attributes, except from certain users (optional)
- Whole object encryption
- Uses a Cryptographic Message Syntax Envelope
- Restricts access to specific individuals

DIGITAL SIGNATURES

- Embedded in SOP Instances
- Can make secure references to unsigned objects
- Multiple Signatures
- Overlapping subsets
- Multiple signers
- Sign individual items
- Signature purposes
- Defined in profiles

ATTRIBUTE LEVEL ENCRYPTION

- Can encrypt all of the SOP Instance, selected Attributes, or even just a single Attribute.
- Security Profiles describe the Attributes to protect
- Local profiles can be used for special needs
- Only encrypt patient information, not equipment or image
- Only encrypt report contents, not patient ID
- Encrypted Attributes optionally move to inside a Cryptographic Message Syntax envelope inside a sequence, to allow re-identification
- The Attributes to be protected are de-identified

KEEPING THE OBJECT CONSISTENT

- Attributes being protected should be intelligently replaced
- The Attribute Type and conditions conventions must be honored
 - A Type 1 (Required) Attribute must have a reasonable replacement (e.g., Patient IDs, dates, names)
 - A Type 3 (Optional) Attribute could be removed
 - See tables in the profiles for recommendations
- UIDs should maintain referential consistency – if a UID is replaced, the new UID should replace the old UID in all references
- Leave out the Encrypted Attributes Sequence, and the new object is irreversibly de-identified
MEDIA SECURITY

- Applies to all DICOM specified media, e.g., CD-R, DVD-R, E-mail, USB device
- The media’s file system remains unencrypted
- No special drivers or file system software needed
- Easy to process and copy
- Object are enclosed within Cryptographic Message Syntax (CMS) Envelopes placed inside regular files
- CMS is often used to secure e-mail
- Optional encryption to protect against unauthorized disclosure
- Optional integrity check to protect against tampering

PROTECTING DATA IN TRANSIT

- TLS Protection against unauthorized listeners
- DICOM Traffic
- DICOM Specifies the use of TLS for encrypting traffic
- HTTP over TLS is known as HTTPS, and is the most common method of protecting Web traffic
- DICOM over TLS has equally strong protection against unauthorized listeners

NODE AUTHENTICATION

- DICOM Traffic
- TLS Node Authentication uses public certificate technology to identify both endpoints
- AE-1 knows with certainty that the other endpoint is AE-3, not AE-7 or some other system
- AE-3 knows with certainty that the other endpoint is AE-1, not AE-5 or some other system

ADVANTAGES TO USING TLS

- TLS encryption protects public internet connections
- This will need to be explained to security staff
- DICOM over TLS is like HTTPS and should be allowed.
- Node Authentication uses can be extensively customized.
- Each connection can be verified in detail, or connections just checked to ensure that they are all within facility connections.
- DICOM enables a very wide variety of authentication and access control policies.
- DICOM does not mandate any particular policies
- TLS works for both traditional DICOM and DICOMweb™

TLS CONFIGURATION

- Very configurable
- Best practices captured in BCP195 from IETF (Internet Engineering Task Force)
- Referenced by the DICOM Standard
- BCP195 TLS Profile (downgradable)
- Non-downgrading BCP195 Profile (restricts negotiation to more secure TLS versions and cipher suites)
- The CRYPTREC TLS Profile (restricts negotiation and cipher suites even further, with additional baseline ciphersuite support — a Japanese recommendation)
CERTIFICATE MANAGEMENT

- Certificates are used to identify systems (and perhaps Application Entities)
- Certificates can be self-generated, facility signed, or signed by internationally recognized authorities.
- Most equipment supports
 - Individually provided certificates per system (self-signed or otherwise)
 - Certificates for facility authorities. Certificates signed by these authorities are recognized as authorized
- The SPC paper “Managing Certificates” describes this in more detail
- The Automatic Certificate Management Environment (ACME) protocol, being standardized by IETF, may be useful

USER CREDENTIALLING

- Option 1: Trust the sender
 - Mutual TLS Authentication
- Option 2a: Assertions during Association Negotiation (traditional DICOM)
 - SAML
 - Kerberos
 - OAuth2/OpenID Connect Tokens
- Option 2b: Leverage Web mechanisms (DICOMweb™)
 - SAML
 - OpenID Connect

EXTENDED NEGOTIATION – RESPONSE EXPECTED

DICOM Application Entity "A"

User ID

Sub-Item (SH)
ID Type (3)
User ID

A-ASSOCIATE Request (A ← B)

DICOM Application Entity "B"

User ID

Sub-Item (SH)
Server-Response

A-ASSOCIATE Response (A → B)

EXTENDED NEGOTIATION – NO RESPONSE EXPECTED

DICOM Application Entity "A"

User ID

Sub-Item (SH)
ID Type (3)
User ID

A-ASSOCIATE Request (A ← B)

DICOM Application Entity "B"

(No Sub-Item)

A-ASSOCIATE Response (A → B)

USER CREDENTIAL TYPE PROFILES

- Un-authenticated identity assertion
 - Systems trust each other
- Username plus passcode
 - Systems in a secure network
- Kerberos-based authentication
 - Strong security, more involved implementation and deployment
- Generic SAML assertion or OAuth2 token
 - Nice mix of simplicity and security

DICOM USER CREDENTIALLING DESIGN GOALS

- Independent of other security mechanisms
- No changes to other DICOM security mechanisms
- Avoid incompatibility with the installed base
- Minimum changes to existing implementation libraries
- Extensible for future credential types
- Established during association negotiation
- Before any regular DIMSE transactions take place
- Allows SCP to reject associations based on ID
PREPARED FOR THE FUTURE

- Could support any mechanism that supports uni-directional assertion mechanisms (e.g., using PKI and Digital Signatures)
- Does not support identity mechanisms that require bi-directional negotiation (e.g., Liberty Alliance proposals)

EXAMPLE APPLICATIONS OF USER CREDENTIALS

- Facilitates audit logging
- Step toward cross-system authorization and access controls
- DICOM still leaves access control in the hands of the application
- Query filtering
- For productivity as well as security

SEVERAL OPTIONS

- User identity alone, with no other security mechanisms
- User identity plus DICOM TLS
- User identity plus future lower level transport mechanisms (e.g., IPv6 with security option)
- User identity plus VPN
- Practically any combination needed

SECURING ACCESS TO DATA

Access Control
- Get permission before allowing action
- Suitable for certain situations, e.g., restricting access to authorized medical staff

Audit Control
- Allow action without interference, trusting the judgment of the staff.
- Monitor behavior to detect and correct errors.
- Both have a place in security systems
- Local security policies determine what is handled by access control, and what is handled by audit controls.

DICOM’S CONTRIBUTION TO ACCESS CONTROL

- DICOM does not specify computer access control
 - These are subject to local policy
 - These are very application specific
 - These are very implementation specific
- DICOM can convey user credentialing
- DICOM does expect that the use of audit trails and activity monitoring will be part of the local security system.
- DICOM defines a standard interface for reporting user and computer activity to a centralized audit repository.

AUDIT REPOSITORY

The audit log messages allow the repository to record a synchronized view of all the activity on all the different systems. The actual log content is encoded as structured XML messages. The audit repository can be used to record and monitor the entire network. The security detection mechanisms may be as simple as flagging a login failure or as highly complex behavior pattern recognition. DICOM enables these mechanisms. DICOM does not specify them.
Thank you for your attention.

And thanks to Eric Pan for providing material for slides, Rob Horn for his brilliance, and the other participants of DICOM WG-14 Security who put forth the effort to make this happen.