Going Beyond 4D with Breathing Motion Modeling Daniel Low, Ph.D.

Disclosures

Varian MRA

ViewRay Stock

Why Is This Talk Happening?

- We need some form of 4DCT
- Commercial 4DCT Low-Pitch Helical
 Cine
- Adapted from Cardiac Imaging
- Cardiac cycle relatively uniform and regular
- Most often true with breathing
- Often not true

There is Motion

- Impacts targeting accuracy
- Impacts dosimetry

It's Not Just UCLA

Bayouth, Wisconsin

More Scans

Scott Hadley, University of Michigan

Laura Cerviño, UCSD

Still More Scans

Tumor Motion Measurement Consequences

- Errors in tumor motion measurement simulated by Dou, et al.
- For 4DCT, irregular breathing causes errors in apparent motion magnitude, errors are "random"
- Look at worst 30% of patients
- Evaluate worst 10% of errors (5% most overestimated, 5% most underestimated)

Dou et al, Med Phys 42, 6084 (2015)

Irregular Breathing

Academic Need to Fix This

- 4DCT artifacts and lack of quantitation limit other research and clinical applications
- 2019 AAPM abstracts that have or use "4DCT", "4D-CT", "4DCBCT", "provide on the second second

1001) 10	PO-GePV-T-350	MO-E115-GePD-F5-01 MO-E115-GePD-F5-06 MO-E115-GePD-F7-01
SU-F-221AB-01 SU-F-304-05 SU-F-30-GePD-F5-06 TH-A-SAN2-01 TH-A-225BCD-03 TH-A-221AB-08	PO-GePV-T-351 PO-GePV-T-374	MO-K-221AB-02 TU-AB-221AB-02
	PO-GePV-T-381 SU-I330-GePD-F7-01	TU-C1030-GePD-F3-02 TU-C1030-GePD-F3-03 TU-C1030-GePD-F5-02
	SU-I430-GePD-F5-02 TU-C1030-GePD-F5-02 SU-L-SAN2-03 TU-C1030-GePD-F5-03 SU-L-221CD-08 TU-C1030-GePD-F5-04	
TH-D-304-02 MO-E115-GePD-F5-03 MO-E115-GePD-F5-05	MO-I345-GePD-F4-01 TU-C1030-GePD-F9-03 TU-J345-GePD-F2-01	TU-C1030-GePD-F9-02 TU-F115-GePD-F2-05 TU-F115-GePD-F5-02
	TU-J345-GePD-F2-01	10-F115-GePD-F5-02

 TU-# SUB007
 9J F-21 CD-0

 TU-JS-CoPT-202
 9J F-22 CD-0

 TU-JS-ScoPT-203
 8U 230-6ePD-540

 TU-JS-ScoPT-204
 8U 230-6ePD-540

 TU-JS-ScoPT-205
 8U 230-6ePD-540

 TU-JS-ScoPT-205
 8U 230-6ePD-540

 WE-AB-22 CHA-54
 8U 230-6ePD-540

 WE-AB-22 CHA-54
 8U 230-6ePD-750

 WE-AB-22 CHA-54
 8U 230-6ePD-750

 WE-AB-22 CHA-54
 8U 230-6ePD-750

 WE-AB-22 CHA-54
 8U 230-6ePD-750

 TH-A-SMR-06
 8U 230-6ePD-764

 TH-4-SMR-06
 7U C-100-6ePD-764

 TH-4-SMR-06
 7U C-100-6ePD-764

 TH-4-SMR-06
 7U C-100-6ePD-764

 TH-4-SMR-07
 7U C-100-6ePD-764

 TH-4-SMR-08
 7U C-100-6ePD-764

 TH-4-2280CD-06
 5U 2-304-64

 TH-4-2280CD-06
 5U 2-304-64

 TH-6-2030-31
 PD C-6PV-763

 PD C-6PV-763
 PD C-6PV-763

 PD C-6PV-763
 PD C-6PV-763

 PD C-6PV-763
 PD C-6PV-763

 PD C-6PV-7731
 PD C-6PV-763

 PD C-6PV-7734
 PD C-6PV-7540</t

Why?

- Sampling and time
- Commercial sequences acquire approximately 8 seconds of data at any one location

(mm

Breathing

- Formally assume regularity in amplitude or phase
- These two assumptions do not allow quantitative sorting-artifact free images or subsequent data

How to Manage Time?

- Prospective gating
- Change temporal distribution of data
 Scan rapidly (minimal motion artifacts)
 Images provide tissue positions
- Tie image data together using surrogate
- How? Through a breathing motion model

Diaphragm vs Bellows, mean relative error 7.4% (14 patients 27 lungs)

Where the Surrogate is Placed Matters

Fast Helical CT Protocol

Motion Model

- Motion model will determine tissue positions as function of time
- Explicit variables are themselves functions of time, breathing irregularity resides within these variables
- Advantage in that image data are fast-helical CT scans that can be easily registered
- Data for the model are:
 - Deformation maps between CT scans
 - Surrogates measured during CT scan acquisition

Model Requirements

- Provide for hysteresis
- Couple position to surrogates
- Surrogate 1
- Breathing amplitude (tidal volume v)
- Manages overall lung inflation
 Insufficient to model hysteresis
- Surrogate 2

 - Hysteresis assumed to be due to pressure imbalances
 Pressure imbalances proportional to excess intra-tracheal pressure + Intra-tracheal pressure proportional to airflow \boldsymbol{f}

Seppenwoolde et al. Int. J. Radiation Oncology Biol. Phys., Vol. 53, No. 4, pp. 822–834, 2002

Surrogate for Model?

- · Started with spirometry-measured tidal volume/airflow
- · Luckily Airflow is time derivative of Tidal Volume
- ANY surrogate proportional to tidal volume can be substituted for tidal volume! (That is most surrogates)
- We use pneumatic bellows

Model

- Assume linear in variables (amplitude and rate)
- This is not necessarily the ideal model, only the first model

Breathing rate

$$\vec{X}(v, f) = \vec{X}_0 + \vec{\sigma}(\vec{X}_0)v + \vec{\beta}(\vec{X}_0)f^{\prime}$$
Position at v=f=0 Breathing amplitude

Fit the Model

- Deformable image registration provides positions of each reference image voxel in other images
- Each has measured v and f
- Fit model parameters to positions

 $\vec{X}(v, f) = \vec{X}_0 + \vec{\alpha}(\vec{X}_0)v + \vec{\beta}(\vec{X}_0)f$

Use the Model

- Deform images to reference image and average (reduced noise) · We changed to increasing mA of first scan
- Deform low-noise reference image to user-selected breathing "phase"
 Select breathing amplitude and rate
 Selections can be based on measured surrogates (e.g. make a video of breathing motion)
 or selected surrogates (e.g. for making cans for treatment planning)
 Use model to deform low-noise reference image to desired phase

Thomas, et al. Red J 89, 191 (2014) New Technique Clinical Technique "Exhalation"

Very Pretty, But Are They Right?

- Images will always be pretty
 No sorting artifacts
- Low noise
- But are they correct?! Computer bugs

 - Surrogate measurement errors
 Model inadequacy

Answer: The original free-breathing CT scans, reconstruct them with the model and compare

Verification example

Dou, et al. Red J 93, 925 (2015)

Irregular Breather

Clinical Implementation (2019)

- Replace 4DCT with model-based CT workflow (aka 5DCT)
- 5 patients
- 25 low-dose CT scans
- Provide 8
 amplitude-based CT scans to the clinic Provide image of the model error
 75th percentile (of the 25 evaluations)

Model Instability

- How to remeasure the model at the treatment machine?
- Model-based CBCT
- Provides better quality images and updated motion model

Conclusions

- We have been hampered for >15 years by an outdated and unnecessary process
- Based on an easy transition from cardiac to breathing
- Fundamentally inappropriate for irregular motion
- Change data sampling
- Use fast-helical CT to provide sorting artifact-free images
- Quantitation
- Potential for automation

Breathing Group

- Dylan O'Connell Michael Lauria Bradley Stiehl
- John Lewis Anand Santhanam
- James Lamb Katelyn Hasse Geraldine Chee
- Kamal Singharo
- Dan Ruan
- Percy Lee

