Lessons Learned & Implementation Challenges of a SGRT DIBH Breast Program

Hania Al-Hallaq, Ph.D.
The University of Chicago
Radiation & Cellular Oncology

Disclosures

- I receive royalties from the University of Chicago for software licensed for computer aided detection of breast cancer.
- I am co-Chair of TG-302: Surface Image Guided RT.
Outline

1. Overview of SGRT for DIBH in breast cancer
2. Issues to consider when implementing SI
3. Clinical challenges for DIBH with SI

1. Overview of SGRT for DIBH
 ▶ Clinical Rationale
Population-based study in Sweden & Denmark

Breast RT from 1958–2001:
- 963 major coronary events
- 1205 controls

Heart dose estimated:
- “CT scan of a woman with typical anatomy”

NSABP B–51 Sets De Facto Standard

Ipsilateral lung:
- Arm 1/Group 1A:
 - ≤ 15% of the ipsilateral lung should receive ≥ 20 Gy
 - ≤ 35% of the ipsilateral lung should receive ≥ 10 Gy
 - ≤ 50% of the ipsilateral lung should receive ≥ 5 Gy
- Arm 1 Groups 2A and 2B:
 - ≤ 30% of the ipsilateral lung should receive ≥ 20 Gy
 - ≤ 50% of the ipsilateral lung should receive ≥ 10 Gy
 - ≤ 65% of the ipsilateral lung should receive ≥ 5 Gy

Contralateral lung:
- ≤ 10% of the contralateral lung should receive ≥ 5 Gy

Heart:
- Arm 1/Group 1A
 - ≤ 5% of the whole heart should receive ≥ 20 Gy for left-sided breast cancers, and 0% of the heart should receive ≥ 20 Gy for right-sided breast cancers
 - ≤ 30% of the whole heart should receive ≥ 10 Gy for left-sided breast cancers, and ≤ 10% of the heart should receive ≥ 10 Gy for right-sided breast cancers
 - Mean heart dose should be ≤ 400 cGy
- Arm 2/Groups 2A and 2B
 - ≤ 5% of the whole heart should receive ≥ 25 Gy for left-sided breast cancers, and 0% of the heart should receive ≥ 25 Gy for right-sided breast cancers
 - ≤ 30% of the whole heart should receive ≥ 15 Gy for left-sided breast cancers, and ≤ 10% of the heart should receive ≥ 15 Gy for right-sided breast cancers
 - Mean heart dose should be ≤ 400 cGy
Advantages of DIBH

- Freeze organ/tumor motion
- Separate heart from target (breast, IMN)
- Increase total lung volume

1. Overview of SGRT for DIBH

 DIBH Techniques
Active Breathing Control (ABC) with Spirometer at William Beaumont

- Largest U.S. institutional experience:
 - 87 patients with ≤T2 disease
 - 50% treated with simple tangents only (FIF)
 - Median dose of 46Gy + 16Gy boost

- Compared to free-breathing (FB), moderate DIBH significantly decreased:
 - Mean heart dose (4.23Gy vs. 2.54Gy)
 - Mean left lung dose (9.08Gy vs. 7.86Gy)
 - All dosimetric parameters (V5, V10, V15, V20) for lung/heart

Voluntary Breath Hold vs. ABC

- 23 patients receiving 40 Gy in 15 fractions:
 - Randomized to v_DIBH or ABC_DIBH for 7 fractions & vice versa
 - Daily portal imaging & CBCT for 6 fractions

- No significant Δ: setup errors, normal tissue doses
- Patients & therapists significantly preferred v_DIBH!

WBRT DIBH: INTRA–FRACTION MONITORING

![Image of monitoring setup]

Breast/Chest Wall Surface vs. ABC

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Intra-DIBH stability and intrafraction reproducibility from 31 left-sided patients in this analysis compared to those of spirometry-based results from seven patients as reported on in Fassi et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intra-DIBH variability (mm)</td>
</tr>
<tr>
<td></td>
<td>A/P</td>
</tr>
<tr>
<td>Fassi et al. (n = 7) Surface monitoring – spirometry</td>
<td>1.37</td>
</tr>
<tr>
<td>This analysis (n = 31) SI + voluntary DIBH</td>
<td>0.66</td>
</tr>
<tr>
<td>% within 2 mm</td>
<td>72.1</td>
</tr>
<tr>
<td>% within 3 mm</td>
<td>98.2</td>
</tr>
<tr>
<td>% within 4 mm</td>
<td>99.4</td>
</tr>
<tr>
<td>% within 5 mm</td>
<td>–</td>
</tr>
<tr>
<td>% within 7 mm</td>
<td>–</td>
</tr>
</tbody>
</table>

2. Issues to Consider

Patient Selection

Patient Selection for voluntary DIBH

- Compliance
- Reproducibility of BH
- Breast size or pendulous shape
- Dosimetric threshold?
2. Issues to Consider

Reconciling SGRT results vs other-IGRT modalities

Verification of Heart Position: MV portal

Mean heart dose reduced from 4.8 Gy (FB) to 1.2 Gy (vDIBH)
Verification with Weekly MV Imaging

Digitally-Reconstructed Radiograph (DRR)

MV Image
Verification with Weekly MV Imaging

Landmark Matching of DRR & MV Image

Following Adoption of kV Imaging
kV Orthogonal Films

Breast Surface & Bony Anatomy Do Not Always Correlate

Inter-fraction

Intra-patient

2. Issues to Consider
 ➤ Learning Curve for SGRT

WBRT Example:
Setup Variability Day 7

Potential breast swelling?
WBRT Example:
AlignRT Detects ↑ Pitch & VRT on Day 7

WBRT Example:
Setup Variability Day 8

Breast matches DRR
WBRT Example: AlignRT No Pitch or VRT on Day 8

2. Issues to Consider
 Field Matching
Field matching

- SI accuracy better at isocenter (Wiersma et al 2013), which coincides with the matchline for plans in which tangential and supraclavicular fields have a common isocenter
- Kugele et al showed that DIBH isocenter reproducibility with SI was better for patients with tangential and supraclavicular fields compared to those with tangential fields only, possibly due to the isocenter placement at the matchline rather than in deformable breast tissue
- Xiao et al found significantly smaller setup errors in CC direction for 3-field vs 2-field DIBH treatments

3. Clinical Challenges of DIBH

Anatomic Changes
WBRT Example: First Day Orthogonal kV Films

WBRT Example: First Day Tangent MV Films
WBRT Example: First Day ‘Entire’ ROI

WBRT Example: First Day ‘Breast’ ROI
WBRT Example: 24th Treatment Tangent Films

WBRT Example: 24th Fraction ‘Entire’ ROI
WBRT Example: 24th Fraction ‘Breast’ ROI

Effects of filling tissue expander during RT

Week 0 Week 4 Week 5
3. Clinical Challenges of DIBH

Skin-Tone Darkening

Skin Darkening Degrades SI Quality
Skin Darkening Due to Bolus Causes Registration Instability

Skin Darkening Degrades SI Quality
3. Clinical Challenges of DIBH
 Non-specific topography

Registration of ‘Entire’ ROI Identifies Roll

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VRT</td>
<td>-1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNG</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAT</td>
<td>-0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAG</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaw</td>
<td>-0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roll</td>
<td>-3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>-1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Registration of ‘CW’ ROI Misinterprets Roll as LAT shift

3. Clinical Challenges of DIBH

- Changes in Breath-hold Pattern
ΔDose Between Breath–Holds

<table>
<thead>
<tr>
<th></th>
<th>DIBH1</th>
<th>DIBH2</th>
<th>FB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Mean Dose (Gy)</td>
<td>1.8</td>
<td>2.5</td>
<td>8.7</td>
</tr>
<tr>
<td>Lung V20 (%)</td>
<td>24%</td>
<td>29%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Identifying Changes in Breath–hold
Identifying Changes in Breath-hold

Planning CT DIBH

Repeat CT DIBH2

<table>
<thead>
<tr>
<th></th>
<th>CT1</th>
<th>CT2</th>
<th>FB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Heart Dose (Gy)</td>
<td>0.5</td>
<td>1.4</td>
<td>2.7</td>
</tr>
<tr>
<td>Lung V20Gy</td>
<td>15%</td>
<td>17.7%</td>
<td>23%</td>
</tr>
</tbody>
</table>
MV Ports Pre & Post Re-simulation

Identifying Changes in Breath-hold

- Verify with internal imaging
- Adapt the plan as necessary
- Acknowledge that variability exists!
Conclusions

- SGRT guidance of DIBH reduces OAR doses, improves efficiency & treatment quality
- Challenges encountered:
 - Patient selection
 - Learning curve
 - Congruence with other-IGRT modalities?
 - Patients change (anatomic, breath-hold, skin darkening)
- Potential solutions:
 - Good immobilization
 - Develop departmental workflows
 - Support therapists & communicate with MDs

Acknowledgements:

Colleagues & therapists at University of Chicago Hospitals

Thank you for your attention!