Introduction of MRgRT: What, How and Why?

X. Allen Li

Professor and Chief Physicist

AAPM, Tu-HI-301-1, July 16th, 2019

knowledge changing life	Froedtert & MEDICAL COLLEGE of WISCONSIN	RADIATION ONCOLOGY
-------------------------	---	--------------------

Inter-fraction anatomic changes:

Problems in current CT/CBCT-based IGRT

- □ Insufficient image quality
- Lack of soft-tissue contrast
- Incapable of visualizing tumor
- Only can see organ/anatomy so far
- □ Lack of real-time 3D images for intrafraction motion ➤ CBCT acquisition time is limited to "pre-treatment" or "periodic"
- □ Incapable of assessing treatment response during the course of RT delivery
 - ➤ Lack of functional/biologic information

Why MRI-guided RT

- Better image quality (high SNR, soft tissue contrast)
- No imaging dose
- Possible fast imaging •
- . Able to provide all anatomy and biological data .
- Real-time imaging (intrafraction motion) > Treat the patient simultaneously while being imaged by MRI
- Capable of online adaptive planning
- Possible adaptation based on treatment response

Froedtert & COLLEGE

Cont.....Why MRgRT?

High soft tissue contrast improves:

- target/OAR delineation . . auto-segmentation
- . Deformable registration
- Workflow and throughput •

Motion management with real-time MRI

- reduces
- margins account for motion and delineation uncertainty

High-field MRI allows

 Adaptation based on tumor and/or normal tissue responses

Integrated MRgRT systems

- ViewRay (0.35T, Co-60 or 6MV Linac)
- Elekta Unity MR-Linac (1.5T, 7MV) .
- Aurora RT MR-Linac (Edmonton) (0.5T, 6MV)
- Australian MR-Linac (1.0T, 6MV)

Froedtert & College of Wisconsin

ViewRay MR-Linac system

• RT components:

- •Un-flattened nominal 6MV beam
 •Double stack double focused 138 leaf MLC
 MRI components:
 - Split superconducting MRI (0.345 T)
 Socm FOV with 70cm bore size
 Imaging isocenter matches with RT system
 - Imaging isocenter matches with RT system
 Zero boil-off

Slide courtesy of Yingli Wang

ViewRay: Real-Time Motion Management

- Revolutionary targeting accuracy
- What you see is what you get
- ✓ 4 Frames per second
- ✓ bSSFP sequence (T2/T1) weighting
- ✓ Imaging a single sagittal plane (you choose the plane)
- ✓ Future: 8 frames per second (FDA cleared, not yet installed for any customer)

Courtesy James Lamb, UCLA

Credit: ViewRay

RADIATION ONCOLOGY

Clinical uses of ViewRay systems

Clinical uses:

- > 5 years
- ➤ 4500 patients
- ➢ 6500 on-table
- adaptation fractions ▶ 50 disease sites

Courtesy Yingli Yang

Elekta Unity MRI-Linac

Fully integrated three subsystems • State of the art radiotherapy delivery system

- Linac rotates around the MRI magnet
 Modified to make it compatible with the MR environment
 Delivery of radiotherapy conformal to MRI-defined anatomy
- 1.5T MRI system
- North System
 Modified to make it compatible with Linac based radiotherapy
 30/4D pre-treatment MRI, 2D/3D beam-on MRI
 Real-time and Online adaptive workflow
 Real-time motion management

 - Online adaptive replanning

Specially designed MR magnet

- Designed to maintain normal 1.5T operation in the imaging volume
- Minimize material in the beam path and ensure it is homogeneous
- Minimise magnetic field at the Linac
- Built using 'normal' process to ensure manufacturability and reliability

h programs. It is not available for sale and its future availability cannot be guarantee

🔿 ELEKTA

Electron Return Effect (ERE)

Froedtert & COLLEGE

Dose difference maps w/o 1.5T

Freedtert & MEDICAL

Enclaining This production is included operation In this production is included operation Image: Stream of this production is the stream of the stre

6

Froedtert & MEDICAL

Daily 4DMRI

Motion Averaged

Mid Position

Respiratory Binned

Froedtert & College

Adapt to Shape: Contour editing

Motion Averaged 4D

Respiration triggered 3D T2

Froedtert & Contract

Changes of ADC during RT (SBRT, 5 fr)

" NCT03500081, STIM, Bill Hall, PI

Figure 1. Size of the high dose radiation bath as a function of the major technical advances editert a the second se

Different PTV expansions into duodenum from pancreatic tumor, yellow represents a tighter PTV volume enabled by real time MRI utilization

Hall et al, EJC 2019

Freedtert & Collect

Pancreatic cancer RT

Froedtert & Collected

Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Rudra 51, Jiang Nº, Rose PP². JE¹, Roach MG¹, Wan L¹, Portelance L⁴, Mellon EA⁴, Bruynzeel A¹, Lag rd F⁵, Bassetti MF³, Parikh PJ¹, Lee nberg SA3

MRgRT

Not just an IGRT Disruptive Innovation

- · Improve tumor definition and characterization and management of motion and response, leading to adaptive dose painting, increasing local control.
- Improve OAR definition, better avoidance, decreasing toxicities.
 More SBRT, hypofractionation, ablative RT, transferring the success of SBRT for lung and liver to other tumor sites.
- Online planning and real-time image guided dose delivery, making RT as an
- intervention. Replace surgery with radiotherapy for more situations.
 More affordable RT

Froedtert & COLLEGE

MRgRT

Not just an IGRT Disruptive Innovation

 Re-define RT (margin, fractionation, dose homogeneity, tumor
 heterogeneity, response-based adaptation, ...)

 > Varying daily radiation dose based on tumor/OAR location

 > Varying total radiation dose based on early response assessment during

- treatment by MR
- > Adjusting therapy during treatment based on early markers of disease response
- Monitoring normal tissue damage during RT from MR changes
 Possibility to treat novel diseases (e.g. kidney, cardiac)

Froedtert & Collect

Acknowledgements

