How lack of in vivo dosimetry decreases safety and efficiency in brachytherapy

Joanna E. Cygler, Ph.D.

The Ottawa Hospital Cancer Centre, Ottawa, Canada
Dept. of Physics, Carleton University, Ottawa, Canada
Dept. of Radiology, University of Ottawa, Ottawa, Canada

AAPM 61st Annual Meeting, July 14-18, 2019, San Antonio, Texas
Disclosure

Patent for RADPOS Dosimetry System

Objectives

- To present rationale for in vivo dosimetry in brachytherapy
 - increased safety
 - efficiency
- To discuss challenges in clinical implementation of in vivo dosimetry program
- To review currently available commercial systems for online in vivo dose measurements
Rationale for in vivo dosimetry in brachytherapy

“To err is human” – *Alexander Pope, An Essay on Criticism, Part II*, 1711

- Errors and dose misadministrations in radiotherapy can result in:
 - Underdosing (geographic miss) of the tumor
 - Overdosing of healthy organs

- Magnitude of errors range
 - from a few percent to lethal doses
 - from a couple of millimeters to complete misses of the tumor

- Many brachytherapy procedures are performed without the safeguards of Record and Verify systems

- In vivo dosimetry is the only way to know what dose was actually delivered to the tumour and organs at risk, OAR
Safety Reports Series No. 17 (2000)
30% of cases are incidents in brachytherapy

ICRP Publication 97 (2005)
Prevention of High-Dose-Rate Brachytherapy Accidents

ICRP Publication 98 (2005)
Radiation Safety Aspects of Brachytherapy for Prostate Cancer using Permanently Implanted Sources
Types of errors in brachytherapy

- Equipment errors
 - mechanical errors
 - control unit failure
 - computer
 - source cable
 - applicators

- Procedure problems

- Human errors

U.S. NRC NUREG-2170 (2017)
Examples of incidents in HDR brachytherapy related to human errors

- Human errors
 - treatments given to wrong patients
 - incorrectly prescribed / delivered doses or repeated treatments to the same patient.
 - Treatments given to a wrong site (e.g. wrong orifice treated)
 - Errors during treatment planning (e.g. reverse order of entry of dwell positions; applicator diameter confused with radius; wrong dwell steps; wrong catheter length)
Causes of human errors

- Complex, high pressure work environment in brachytherapy
- Combined with how the human brain works

Prospective Memory
Prospective Memory

- Prospective memory involves remembering to perform an action at the appropriate time (McDaniel & Einstein, 2000).

- Depends on:
 - How the human brain works
 - Complexity of work environment

- Brachytherapy setting
 - requires multi-tasking
 - frequent interruptions and distractions
Prospective Memory - vulnerability

- Brachytherapy workers carry a particularly high load on their prospective memory
 - risk of errors

 - Eliminating or minimizing the interruptions during procedures could help to reduce load on prospective memory and therefore human errors.

 - In some cases, in vivo dosimetry would have prevented propagation of certain errors to multiple fractions/patients and therefore improve safety and efficiency in brachytherapy.
Recent (2018) incident in North America: impact on safety and efficiency of brachytherapy process

- HDR cervix treatments
 - wrong catheter LENGTH
 - geographic miss of the tumor
 - overdose of healthy tissues

- Investigation
 - 25 patients possibly affected over a period of time
 - patients informed
Negative impact of error on safety and efficiency:

- Incident Impact
 - Patients
 - Affected Patients
 - Prospective Patients
 - Hospital
Impact on safety and efficiency: Affected Patients

- Impact on affected patients – Quality of Life
 - Treatment compromised
 - Failure of tumor control?
 - Overdosed OAR complications?
 - Additional close follow-ups of identified patients
 - Additional diagnostic and pathological tests ordered on periodical basis
 - Emotional impact - anxiety and anger
Impact on safety and efficiency: Prospective Patients

- Impact on prospective new cervix patients – Quality of Life
 - HDR treatments of future cervix cancer patients suspended till further notice
 - Prospective patients had to travel to other centres
 - Extra cost and inconvenience for these patients
Impact on safety and efficiency: Cancer Centre

Impact on cancer centre

- Extra workload and related cost
 - Close follow-ups of identified patients
 - Additional diagnostic and pathological tests ordered for affected patients on periodical basis

- Suspension of HDR treatments of cervix cancer till further notice
 - Loss of funding for the involved centre

- Reputation
Conclusions / lessons learned

There are many lessons learned, but in the context of this lecture:

Routine, adequate in vivo dosimetry would

- *limit the number of patients / tx fractions affected by this error*
- *Improve safety and efficiency in brachytherapy*
ICRP 86 (2000) – “adequate in vivo dosimetry would prevent most of accidental exposures”
What does “adequate” mean?

- Every fraction?
- Once a week?
- First fraction only?

We need to define what “adequate” means!

ESTRO’s basic philosophy includes routine in-vivo dosimetry as an important part in Quality Control of radiotherapy

In vivo dosimetry is required by law in some countries
Routine in vivo dosimetry program in brachytherapy

What is needed?

- Robust dosimetry system
 - small detectors with high S/N ratio
 - minimally intrusive to the patient
 - fast and reliable, real-time dose readout
Types of detectors used for in vivo dosimetry

- TLD
- OSL
- Diodes
- MOSFETs
- PSD
- RL

- **off-line (passive) dosimetry**
- **on-line (real-time) dosimetry**
Diode system

- Measures rectum and bladder dose
- A five-diode rectum probe
- Two types of single bladder probes
Advantages and disadvantages of diodes

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>High sensitivity (18000× equal volume ion chamber)</td>
<td>Temperature dependence</td>
</tr>
<tr>
<td>Real time on-line readings</td>
<td>Energy dependence</td>
</tr>
<tr>
<td>Efficient (fast) in use</td>
<td>Angular dependence</td>
</tr>
<tr>
<td>Waterproof</td>
<td>Different detectors for photon and electron beams</td>
</tr>
<tr>
<td>Durable</td>
<td>Radiation damage – change of sensitivity with accumulated dose</td>
</tr>
<tr>
<td></td>
<td>Cumbersome cables on most systems</td>
</tr>
</tbody>
</table>
Mobile MOSFET system

Two physical detector sizes:
- standard (8 x 2.5 x 1.3 mm³)
- microMOSFETs (3.5 x 1 x 1 mm³)
 - Suitable for brachytherapy

Two detector active volumes (sensitivities):
- Standard (0.2 x 0.2 x 5·10⁻⁴ mm³)
- High (0.2 x 0.2 x 1·10⁻³ mm³)

Cygler and Scalchi AAPM Summer School 2009

J. E. Cygler, AAPM 61st Annual Meeting, July 14-18, 2019, San Antonio, Texas
TU-L-SAN4-0 4:30 PM - 6:00 PM: Optimizing Safety and Efficiency in Brachytherapy
RADPOS*
Time-resolved dosimetry system

- Combination of microMOSFET dosimeter and electromagnetic positioning sensor
- Simultaneous measurements of dose and spatial position
- Software allows sampling dose and position manually/automatically
- Real-time treatment verification tool
 - Patient and/or organ motion
 - Accuracy of delivered dose
- Suitable for brachytherapy

Advantages and disadvantages of MOSFET detectors

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Instantaneous readouts (on-line dosimetry)</td>
<td>- Finite life expectancy</td>
</tr>
<tr>
<td>- Very small active volume</td>
<td>- Energy dependence</td>
</tr>
<tr>
<td>- Dual detectors eliminate most correction factors</td>
<td>- Some (2.5%) angular dependence</td>
</tr>
<tr>
<td>- No temperature dependence for dual-MOSFET-dual-bias</td>
<td>- Temperature dependence for single-MOSFET-single-bias</td>
</tr>
<tr>
<td>- Waterproof</td>
<td></td>
</tr>
<tr>
<td>- Efficient in use (doesn’t consume much time)</td>
<td></td>
</tr>
</tbody>
</table>
Exradin W1 Plastic Scintillator

Plastic Scintillator Detector, PSD

Physical probe size is 2.8 mm diameter, 42 mm length

Active volume size is 1.0 mm diameter, x 3.0 mm length

http://www.standardimaging.com/exradin/exradin-scintillator/
In vivo dosimetry with PSD

- Small size (2.8 mm diameter x 42 mm long)
 - can fit into rectal probe
 - can fit into Foley catheter

Exradin W1 Scintillator from Standard Imaging

A detector patch
- The red line represents the dose sensitive region
- Detector elements are spaced every 2 mm

The detectors are mounted on a rectal balloon

Pictures courtesy of S. Beddar

Advantages and disadvantages of plastic scintillators

Advantages
- On-line system
- Spatial resolution
- Linear response to dose
- Dose rate independence
- Energy independence
- Easy to produce
- Relatively inexpensive

Disadvantages
- Some temperature dependence
- Some radiation damage (~ 2% / kGy)

Wootton and Beddar, PMB 2013

![Graph showing normalized measured dose vs detector temperature](image)
In vivo dosimetry with RL detectors: Securidose -BT

- Based on GaN crystal radioluminescence
- Real-time dosimetry system for HDR
- Developed by the universities of Grenoble (UJF) and Lyon (UCBL) and Dosilab Co
- Miniature crystal fits in a brachytherapy needle

https://www.dosilab.ch/en-ch/home
Technical challenges for in vivo dosimetry in brachytherapy

- High dose gradients
- Short treatment distances
- Energy dependence of detector response
- Uncertainties on radiation source parameters
- Shortcomings of dose calculation algorithms

large effect of positioning errors
Barriers to routine in vivo dosimetry

- Cost (?)
 - Equipment – lack of fully integrated systems (?)
 - Staff to perform and analyze measurements
- Efficiency - increased treatment and staff time (?)

 Not true for fully integrated system

- Staff resistance (?)
 - Lack of well documented guidelines, protocols and procedures (?)
 - Lack of proper training
 - Extra work load
 - Uncertainty about possibly changing work role in the treatment team
Integrated in vivo dosimetry - SagiNova®

Eases handling of real-time in vivo dosimetry

- Integration of probe connection into treatment delivery unit
- Integrated live monitoring of doses to rectum and bladder at the control console
- Complete data integrated in treatment report
- Warnings displayed if dose limits are exceeded
- Individual definition of dose limits for bladder and rectum

Dosimetry equipment of Eckert & Ziegler BEBIG – SagiNova®

Presentation 2016

http://www.bebig.com/united_states/products/hdr_brachytherapy/new_saginova/
Integrated in vivo dosimetry

http://www.bebig.com/united_states/products/hdr_brachytherapy/new_saginova/

Live monitoring of dose to rectum and bladder including highlighting of high values

Dose Monitoring Displayed on the Control Unit

Dosimeter Measurements (Gy)

- R1: 7.31 Gy
- R2: 10.94 Gy
- R3: 1.29 Gy
- R4: 0.36 Gy
- R5: 0.16 Gy
- B1: 0.41 Gy

Diodes for dose measurement in bladder and rectum

Eckert & Ziegler BEBIG – Saginova®
Presentation 2016
Conclusions

- Errors in brachytherapy dose delivery do happen
- Human errors account for the largest fraction of all errors
- They can affect multiple tx fractions and/or patients
- Errors have negative impact on safety and efficiency of the brachytherapy process
 - result in compromised treatment outcomes
 - consume extra time and resources
- **Routine in-vivo dosimetry** would prevent propagation of errors to multiple tx fractions and/or patients and therefore improve safety and efficiency in brachytherapy
- Commercial in vivo dosimetry systems exist and should be routinely used in brachytherapy
On-line measurements on patients

- Waldhäusl et al, *Radiother. and Onc.* (2005), 77, 310 (diodes, 55 patients)
- Cygler et al, *Radiother. and Onc.* (2006), 80, 296 (single MOSFET, 5 patients)
- Cherpak et al, Brachytherapy, 13, (2014) 169 (RADPOS, 16 patients)

passive (not on-line) detectors
Selected references

Selected references cont.

Thank you