Recent Advancements in Quality Assurance for Radiation Therapy: Advances for Autonomous Linac QA

Yong Yang, Ph.D. Department of Radiation Oncology Stanford University

2019 AAPM Therapy Educational Course

Disclosure

I have no conflicts of interest to disclose.

Acknowledgement

- Lei Xing, Ph.D.
 Cesare H Jenkins, Ph.D.
 Ben Fahimian. Ph.D.
 Amy Yu, Ph.D.
 Bin Han, Ph.D.
 Lei Wang, Ph.D.
 Menyu Jia

Modern digital Linacs

- FFF beams, Dynamic/Virtual wedges...
- 6D Couch
- MLC
- Imaging Systems: kV, MV, CBCT...
- Respiratory gating
- Special techniques: IMRT/VMAT, SRS/SBRT...

Varian TrueBeam STx with Brainlab ExacTrac

TG-142: A comprehensive Linac QA Guideline

metry	Frequ
nanical	 Daily
	 Mon
У	

ency:

thly

ally

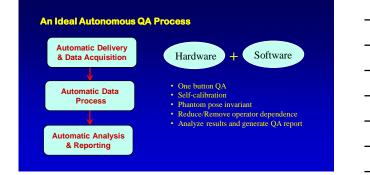
- MLC
- Imaging: kV, MV, CBCT

• Dosi

Mecl

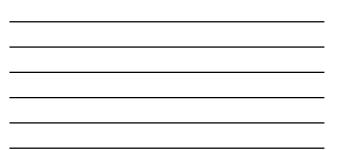
• Safet

- Respiratory gating
- Special procedures: IMRT/VMAT, SRS/SBRT, TBI,...

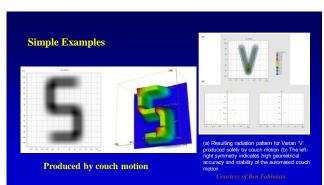

Need for Autonomous QA

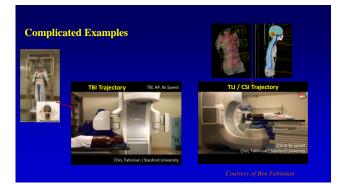
- QA for a modern Linac has been extremely extended with new components/functions added
- QA has become a complicated and very time consuming task

able 3. Time (hours) spent undertaking linear accelerator QC testing					
Time category	Minimum value	First quartile	Mean	Third quartile	Maximum value
Total machine time (hours per linear accelerator per month)	3.0	10.0	15.0	20.0	35.0
Total time including offline analysis (hours per linear accelerator per month)	5.0	13.1	19.5	26.2	56.0
Total time for patient-specific IMRT QC per patient	0.0	1.0	1.5	2.1	10.0


Autonomous QA: More Efficient, stable and accurate

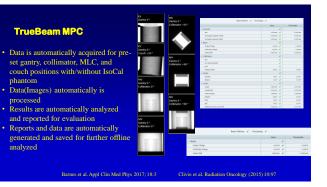
Palmer A et al, Br. J. Radiol. 2012(85) e1067-73





Varian TrueBeam Developer Mode

TrueBeam Machine Performance Check (MPC)



Geometry Check

Beam Constancy check

- Isocenter size and location Coincidence of radiation isocenter with kV&MV imager
- isocenters Gantry/Collimator rotation
- Cality Communication
 Jaw positioning accuracy
 MLC positioning accuracy
 6D couch positioning accuracy
- Beam output changeBeam uniformityBeam center change

Autonomous Imaging QA

Daily Imaging QA

- Imaging and treatment coordinate coincidence
 Couch positioning/repositioning
 Winston-Lutz test

verify coordinate coinciden

An XML script loaded in TrueBeam developer mode to automatically take MV images and CBCT images
 Check the embedded BBs positions to

MIMI Ph

Daily Imaging QA

Winston-Lutz test

- An XML Script is used to automatically acquire eight MV images with different Gantry and Couch positions.
 An in-house developed software to process data and report the results <u>https://www.youtube.com/watch?v=JwOvALjRqgE</u> Gilmer Valdes et al. *JACMP*. Vol. 16, No. 4, 2015

Monthly imaging QA

- · Image quality • kV, MV and CBCT and treatment coordinate coincidence
- An XML Script is used to automatically acquire images with different Couch positions.
 An in-house developed software to process data and report the results

Q.4	Physicists	Full Automation	
Daily QA	14.3±2.4	4.2±0.7	
Winston-Lutz Test	29.1+6.2	3.1+0.9	Results: Physic
Imaging monthly QA without geometry calibration and EPID position and reproducibility	58.7±6.6	19.3±1.0	Results. Thysic
Imaging monthly OA	70.7±8.0	21.8±0.6	

vs. Auto OA

Gilmer Valdes et al, JACMP, Vol. 16, No. 4, 2015

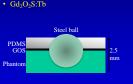
Autonomous QA at Stanford

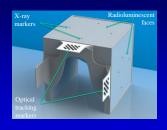
Direct visualization of Radiation

When radiation irradiates a radioluminescent sheet fabricated from a mixture of GOS:Tb and PDMS, the irradiated area become visible.

Is this possible to use this to improve our QA processes?

Autonomous Mechanical QA


- Light Field/Radiation field coincidence
 Jaw position indicators
 Cross-hair centering
 Couch position indicators
 Laser localization


Mechanical	
Light/radiation field coincidence ^b	2 mm or 1% on a side
Light/radiation field coincidence ^b (asymmetric)	1 mm or 1% on a side
Distance check device for lasers compared with	1 mm
front pointer	
Gantry/collimator angle indicators	1.0°
(@ cardinal angles) (digital only)	
Accessory trays (i.e., port film graticle tray)	2 mm
Jaw position indicators (symmetric) ⁴	2 mm
Jaw position indicators (asymmetric) ^d	1 mm
Cross-hair centering (walkout)	1 mm
Treatment couch position indicators ⁴ 2 m	n/1° 2 mm/1°
Wedge placement accuracy	2 mm
Compensator placement accuracy ^f	1 mm
Latching of wedges, blocking tray ^g	Functional
Localizing lasers ±2	mm ±1 mm

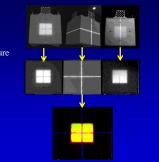
Phantom

- Structure fabricated on a MakerBot Z18 3D printer
 2.38 mm stainless steel balls
 PDMS

Camera

- Power over Ethernet (POE) machine
- Single cable connection
- 5mm f/2.5 S-mount lens
- 3D printed holder that connects to LINAC

Automatic Delivery/Operations


XML Script to implement:

- Turn on/off field light
- · Set jaw positions
- Beam on
- Rotate gantry Turn on/off laser
- Treatment couch motions
- kV imaging Set MLC

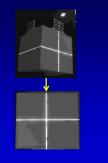
Image Processing

- Image identification and capture
- Transformation Analysis

Image identification and capture

Key images were identified based on:

- Known delivery sequenceMotion detection algorithm

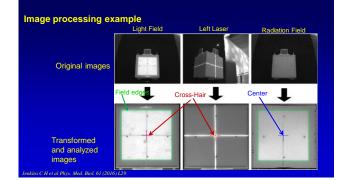


Radiation Field

Transformation

- Transform the pixels corresponding to the phantom face into a calibrated image space
 The transformation was determined as the linear transform that transforms the locations of the four fiducials to their aligned locations within the calibrated imponent space
- angree to another within the calibrated image space
 The calibrated images were analyzed to identify the locations of salient features such as field edges, cross-hairs and lasers.
 - Self-calibration
 - Correct for variations in setup

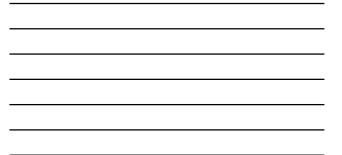
Analysis

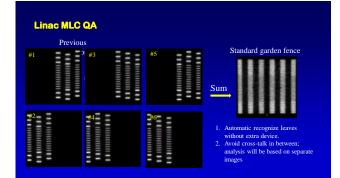

- Field Edges

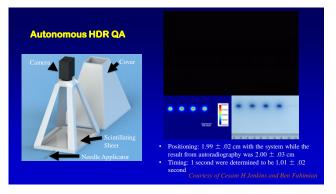
 Fit logistic function to find location of half value

 Crosshairs and lasers

 Gaussian curve fitting
 kV and MV images
 Image center is projected into the calibrated coordinate space


en measuren	Single phantom setup		▲ Varied phantom setup	
Measurement	Light field cross-hair coincidence (mm)	Light/radiation field coincidence (mm)	Light field cross hair coincidence (mm)	Light/radiation field coincidence (mm)
Center shift X	-0.16 ± 0.03	0.21 ± 0.03	-0.10 ± 0.05	0.17 ± 0.06
Center shift Y	-0.80 ± 0.03	0.61 ± 0.06	-0.86 ± 0.09	0.60 ± 0.16
X1 difference		-0.19 ± 0.06		-0.19 ± 0.12
X2 difference		0.60 ± 0.05		0.53 ± 0.06
Y1 difference		0.99 ± 0.05		0.87 ± 0.11
V2 difference		0.24 ± 0.11		0.32 ± 0.25


Auto QA vs. Manual QA


· Robust automated performance Accurate

- Accurate
 Be able to achieve 0.1mm-0.2mm accuracy, Better/Equivalent to current clinical practice
 Repeatable
- Nore Efficient: ~10 min vs. manual
- Note Entreten > 10 min vs. m 1~2 hours > Set up: 7:00 min > Plan delivery: 1:21 min > Export DICOM: 1:00 min > Clean up: 2:00 min

		extering methods.					
Light field radiation alignment	Symmetic beams	Conter shift X (state)	Count shift Y (sum)	Width difference (1988)	Height difference (new		
Astes	5 = 5 cm	-0.02 ± 0.03	0.68 ± 0.11	-0.58 4 0.05	-0.50 ± 0.00		
Actio	10×10 cm	-0.21 ± 0.07	0.96 ± 0.12	-0.63 4 0.15	-0.94 = 0.21		
10-2	15 × 15 cm	-0.79	0.40	-0.53	0.99		
	Assumption learns	Difference in position (mm)					
	(XJ.X2.91.92)	XC	X2	¥1	12		
Aano	(-3, 4, -3, 4) (24)	0.23 ± 0.03	-0.39 ± 0.85	-0.25 ± 0.06	-0.95 ± 0.07		
Jan position indicators	Summeric beauts	Width Difference (max)	Height Difference (and	ù.			
Asto	5×5cm	-0.76 ± 0.02	-1.73 ± 0.09				
Aano	10×10 cm	-0.46 2.0.16	-1.71 ± 0.19				
In-alge	5×5cm	00	-2.0				
hinalign	20 × 10 cm	0.0	-2.0				
	Asymptotic booms	EXEmando in position (stati)					
	(XJ, XZ, FZ, YZ)	XI.	32	11	82		
Auto	(-3,4,-3,4)(200)	0.06 ± 0.06	0.80 ± 0.03	3.40 ± 0.36	0.63 ± 0.21		
Ine-align	1-5, 23, -5, -2.51 (cm)	0.0	18	1.0	1.9		
Cross-bair controlog	Center shift X (rest)	Center shift 7 (100)	Walkowi (mes)				
Aan	-0.75 ± 0.00	0.77 ± 0.01	0.87 ± 0.12				
PC-27ss-edge	-0.25	8.67	0.5				
Courts peritien	Shifts (lat., long.) (cont	Lot traini	Long (mm)				
ARE	(30, 30)	30.17 ± 0.29	30.22±0.15				
Reier	(200, 300)	350.3	300.1				
Laser localization (relative to cross hairs)	Coner shift X (not)	Center shift Y (mm)					
A480	6.29 2.30	-0.26 ± 0.13					
her-align		0.25					

Discrete Spot Scanning Proton Beam Therapy

- MeV protons delivered in bursts to a single spot
 Spot can be steered in XY, modulating energy controls Bragg peak depth (Z)
 Spot delivery and modulation occurs on millisecond time
- Sport derivery and most scale
 Hollow cubic phantom
 CMOS cameras

Integrated Delivery

Summary

- QA for a modern Linac has become a complicated and very time consuming task
- Programmable automatic delivery/operations are available for modern digital Linacs
- Autonomous QA has the potential to provide QA
 procedures with high efficiency and less operator/setup
 variation dependence
- Autonomous QA presents an attractive option for future Linac QA procedures

