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Issues with CBCT

Low soft-tissue contrast

All sorts of artifacts: scatter, motion, noise

Additional imaging dose
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CBCT

Wide availability
LINAC, proton, Gamma Knife

Adaptive RT

Electron density
Inexpensive compared to MRI

Many recent advances in improving CBCT quality
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Improve CBCT HU accuracy
Deform planning CT to CBCT geometry

Accurate CT number from planning CT

Challenge: Content change

Scatter correction
Hardware based
Software based

Analytical (kernel, Boltzmann transport)
Monte Carlo
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Blocker based scatter correction

@ X-ray source

= Signal in blocked region attribute  N—
to scatter, signal in un-blocked
region is the sum of primary and

Object
scatter

Detector

m 2D scatter fluence is estimated using interpolation
of the detected signal in the blocked region.

m Static blocker: reduce imaging volume or additional
measurements needed.
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Moving Blocker
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region (Wang et al, Med. Phys, 2010)
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Motor-controlled Blocker

https://www.youtube.com/watch?v=m71jAxiHp58

(Ouyang et al, Med. Phys., 2013, Ouyang et al, Radiother. Oncol. 2015; Chen et al, Med Phys. 2017) 't

Pelvic Phantom

CBCT with
Scatter

CBCT moving blocker MDCT

Radiation Oncology

CT number accuracy

ROI1 ROI2 ROI3 RMSE

MDCT fan-beam 69 70 58

Normal CBCT 514 01 .191 239

Moving blocker

CBCT With_ 70 67 42 10
scatter correction

(Ouyang et al, Med. Phys., vol. 40, pp. 071903, 2013



https://www.youtube.com/watch?v=m71jAxiHp58
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Acuros CTS

Estimate scatter by deterministically solving the linear
Boltzmann transport equation (LBTE)

Source [
1) Trace photons from source to
all voxels in the object
Voxelized
Object
2) Photons are absorbed and/or
scattered within object
No SC fASKS Acuros
e

(Maslowski et al, Med. Phys., 2018; Wang et al, Med Phys. 2018)

Synthesized CT from CBCT

Supervised Learning
Require paired CBCT and planning CT (pCT)
In reality, perfectly matched CBCT and pCT does not exist

Unsupervised Learning is desired
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Image Style Transfer Using Convolutional Neural Networks
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CBCT provides content (i.e., updated patient
anatomy)

Planning CT provides style (i.e., accurate CT number)
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Contextual loss: measured based on the differences between
the low-level image features extracted by the kernels in the
first block of the pre-trained loss network

Perceptual loss: calculated based on the differences between
the high-level image features extracted by the kernels in the
second, third and fourth blocks of the loss network.
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Results
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Position

Synthetic CT  Reference CT

L. Chen et al, Med. Phys., under revision, 2019

Four Dimensional CBCT (4D-CBCT)

= In 4D-CBCT, projection images are sorted to different
groups according to the breathing phases.

m The number of projections at each phase is
considerably smaller than 3D-CBCT from full
projection dataset.

m Severe view aliasing artifacts will
present in the 4D-CBCT when it is
reconstructed by analytical
Feldkamp-Davis-Kress (FDK)
algorithm .
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Simultaneous Motion Estimation and Image
Reconstruction (SMEIR) for 4D-CBCT
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Incorporate Biomechanical Modeling
into 4D-CBCT reconstruction
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More DVF with bi t

63, 045002 (2018)

Develop a convolutional neural network (CNN) based approach to
improve the DVFs accuracy inside of lung, overcoming the long

computational time of biomechanical modelling.

Using DVFs at lung boundary estimated by 2D-3D registration step in
SMEIR as the input, we aim to use CNN to improve the DVFs inside of
lung. We developed two U-net based architectures to estimate DVFs
inside of lung.
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DVFs from SMEIR Updated DVFs

U-Net-3C
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Lung image
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U-Net-4C
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REGIEN

Results

4D-CBCT 2D-3D Registration Prediction Unet-3C Prediction Unet-4C 4D-CT Registration
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Results

SMEIR-Bio U-net-3C U-net-4C

Ground Truth SMEIR
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Lung Tumor Tracking by Surrogate Signals

Tracking motion only at limited locations on chest

wall surface:
Motions are highly correlated

0O Construct an observation matrix from 3D motions of all
sample points.

Q QR decomposition with column pivoting (QCRP) to identify
locations with independent motion patterns

Patient 1 Patient 3
000 0o 3

Example of selected locations for three different patients
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Predicting Lung Tumor Motion

Train model parameters for each vertex of lung surface from
motions at selected locations

T

cAl

Optimal uy, and wy

Derive tumor motion using predicted lung surface motion
through biomechanical modeling
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Lung Tumor Motion Simulation Error

FEM respiration simulation using predicted lung surface motion as the
boundary condition
M

™M
motion | motion
range range

motion
range
AP (mm) | RL (mm) | SI (mm)
1.23 243 112 2.94 0.53 1.02 0.68 1.33
0.58 il 17/ 0.30 1.33 0.59 0.63 0.28 0.90
1.65 1.56 4.35 4.90 0.71 0.82 1.43 1.79

121 2.90 0.45 3.17 031 0.84 0.44 0.99

1.49 4.96 3.30 6.14 0.98 2.32 1.34 2.85

1.38 0.87 1.50 221 0.36 0.78 0.51 0.99

1.07 1.66 5.70 6.03 0.40 0.46 178 1.88

0.85 0.70 5.40 551 0.39 0.52 121 137

0.68 2.53 1423 1446 034 1.01 222 2.46
0

1.16 2.25 4.83 593 0&56——095 420 1.69
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Dose reconstruction for lung SBRT
based on 4D-CBCT
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CT Recon w/ Human-Like Auto Parameter Adjusting
n

[ = argin J[P] g + |

Bad parameters Manual parameters Ideal parameters
(image level)

IEEE TMI 37(6):1430-1439, 2018
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CT Recon w/ Human-Like Auto Parameter Adjusting

R 6,23

A parameter tuning policy network
(PTPN) is constructed and trained
using end-to-end deep

reinforcement learning (DRL) Reward

Shen, ..., Jia, IEEE TMI 37(6):1430-1439, 2018
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CNN-based metal artifacts reduction
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Oncology Zhang and Yu, IEEE TMI 37(6):1370-1381, 2018 R T

Conclusions
Image quality of CBCT can be improved by both
hardware- and software-based approaches, especially
with help from recent advances of deep convolutional
neural network.

With improved quantification and motion modeling,
CBCT and 4D-CBCT can be used for dose reconstruction
and adaptive RT.

Combined with other noninvasive imaging, 4D-CBCT can
facilitate tracking tumor motion during beam delivery.
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