Redesigning IMRT for Low- and Middle-Income Countries

Eric Ford, PhD FAAPM Professor University of Washington Seattle, WA

Disclosures

NCI UG3 CA211310-01

No other funding

Outline

- Cancer: global burden of disease
- Radiotherapy: benefit and access
- Technology for low-middle income countries (LMIC)

IMRT (Intensity Modulated Radiation ______ Therapy)

• IMRT allows for greatly enhanced organ sparing

Radiotherapy in Cancer Management

Advantages

- Non-invasive
- Allows organ preservation
- Low risk of morbidities
- Costs are low

Radiotherapy in Cancer Management

Cancer type	Recommended optimal utilization rate of RT (%)
Head & Neck	78
Lung	76
Esophageal	80
Breast	83
Central Nervous System	92

Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104(6):1129-37

Global Access to Radiation Therapy

US: 18 times as many clinics per M people as in India

Global Access to Radiation Therapy

Tsapaki et al, Medical Physics workforce: a global perspective, Physicia Medica, 55, 33-39, (2018)

Impact of Reliability

McCarroll et al. J Glob Onc, 3(5), 563- 571 (2017)

- Reliability
- Simplicity
- Efficiency
- Reduced staffing requirements

NCI Affordable Cancer Technology Program

Novel Ring-based Compensator IMRT

Plastic shell 3D printed

Fill plastic shell with Tungsten

Treat each field through unique compensator

- Compensator vs. MLC IMRT
 - Upfront costs
 - Continuing maintenance
 - Power
 - QA, physics time & expertise
- Enables IMRT with ⁶⁰Co, efficient use of dose

Van Schelt, J. et al. Med Phys, 2018

Van Schelt, J. et al. Med Phys, 2018

Compensator Resolution (H&N plans)

Monte Carlo Simulations (Geant4)

Reliability

Complex radiation therapy workflow

Ford et al. Int J Radiat Oncol Biol Phys, (2009)

- Reliability
- Simplicity ocess

Wholency

Reduced staffing requirements

Summary

- Acute need to radiation therapy in underserved areas of the globe
- Current methods have evolved organically
- Complex, time-consuming, error-prone
- Shift toward simplicity, efficiency

Acknowledgments

<u>UW</u> Dolla Toomeh, PhD Jon Van Schelt, PhD Patricia Sponseller Nick Fong <u>AllMS New Delhi</u> Clarisa Leu-Rodriguez Dr. V. Subramani Ramesh Rengan, MD Dr. D.N. Sharma Dr. G.K. Rath

<u>UCSD</u> Derek Brown, PhD

Coimbatore Hospital, India K. Govindarajan, PhD Panacea Medical Technologies Pvt <u>Ltd.</u> G.V. Subrahmanyam R. Tamilarasan

P. Manikandan

Thank You! eford@uw.edu

