Biological Dose Escalation and Outcomes Modeling in the Era of Stereotactic Radiotherapy

Presented at the 61st Annual Meeting of the AAPM in San Antonio, TX

David J. Carlson, PhD, DARR, FAAPM
Associate Professor & Director of Clinical Operations, Physics Division

Thursday, July 18, 2019

Background and Motivation

Biologically Guided Radiation Therapy (BGRT)
- Systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology
- Optimize treatment conditions based on biological objectives

What are the Big Questions for stereotactic RT?
- To what extent does classical radiobiology apply at high doses?
- Fundamental difference in biology between conventional and SBRT?
- Are conventional models valid at high doses per fraction?

The utilization of SBRT is rising

Rubio et al., 2013 Reports of Practical Oncology and Radiotherapy; 18: 387–396

Why are clinical outcomes so good for SBRT?

Unique biological mechanisms have been suggested:

- Tumor vasculature damage at high doses
 - Rapid tumor vascular shutdown due to endothelial cell apoptosis increases tumor hypoxia and reduces repair of radiation damage to tumor cells (Fuchs and Kolesnick, MSKCC)
 - Vascular damage at high doses produces secondary cell killing (Song, UM)
- Enhanced antitumor immunity at high doses

Treatment Planning and Delivery

Objective in conventional RT to deliver uniform Rx dose to target volume
- Paradigm shift for prescribing dose for SBRT
 1. Target limited tissue volume, containing gross tumor + margin, with very high doses and hotspots within the target → facilitated by advancement in technology of IMRT/IGRT/VMAT
 2. Minimize volume of normal tissue receiving high doses → sharp dose gradients

Tumor Control Probability (TCP) Model

TCP → relates tumor size and radiation dose to the prob. of tumor control (i.e., no tumor cells survive)

\[TCP = \exp\left[-N \cdot S(D)\right] = \exp\left[-N \cdot \left(e^{-\alpha \cdot D/\beta}\right)^{D/\beta}\right] \]

\[N = \text{initial } # \text{ of tumor clonogens} \]

Data from: Levegrun et al. IJROBP 2001; 51 (4): 1064–1080
Inter-patient variability in radiosensitivity

- Heterogeneity of human tumour radiation response well known
- Account for variation in inter- (and intra-) patient radiosensitivity by assuming that parameter values are normally distributed across the population
- If inter-patient heterogeneity is ignored, TCP model generally results in unrealistically steep dose-response curve

Factors that alter treatment effectiveness

4 R’s of Radiobiology give rise to “dose rate” effects:
- Repopulation
- Primary DNA repair
- Reoxygenation
- Radioresistance & Redistribution

What about tumor hypoxia at high doses?

- Oxygenation data are sparse
- OER values for cell death are relatively constant over a large dose range
- May actually decrease slightly with dose (Winters and Brown 1992)
- Statistically, OER_{dis} = OER_{hyp}
- Reasonable assumption for large number of in vivo data set (Carlson et al. 2004)

Clinical significance of tumor hypoxia

Head and neck cancer
- V79-719A Chinese hamster cell survival data from Watts et al. (1986)
 - OER values for cell death are relatively constant over a large dose range
 - May actually decrease slightly with dose (Winters and Brown 1992; Nahum et al. 2005)
 - Statistically, OER_{dis} = OER_{hyp}
 - Reasonable assumption for large number of in vivo data set (Carlson et al. 2004)

Prostate cancer
- Average oxygen levels within tumors:
 - ~90% of solid tumors have median values below normal (40-60 mmHg)
 - Half have median values below 5 mmHg

Effects of Hypoxia and Fractionation on Cell Survival

What happens to total cell killing if we include hypoxia?

- Dose fraction (F) is a multi-component tumour BED under conditions of hypoxia and fractionation
 - D_t = (D_{red} + D_h + D_{rad}) / R_{dis} + R_{hyp} + R_{rad}

- Isotransform BED Example for Prostate
 - Conventional: 35 fractions of 4 Gy (a=0.2, b=0.5 Gy):
 - BED = D_{red} + D_h + D_{rad}
 - BED = 78 Gy
 - Rearrange simplified BED equation:
 - D_{red} = (D_h + D_{rad}) / (1 + D_h / D_{rad})

Page 2
Hypoxia Imaging Clinical Trial at Yale

- IRB-approved protocol to perform serial 18F-FMISO PET imaging in early-stage NSCLC cancer patients undergoing SBRT

18F-FMISO PET (TBR)

18F-FMISO PET (Ki)

#1 SBRT 18Gy

Hypoxia Imaging at Yale: All analyzed patients to date

- Potential for increase in hypoxic fraction post-SBRT
- Heterogeneity between baseline levels of hypoxia is significant

Opportunity for therapeutic intervention

Imaging Day

Patient #1 | Patient #2 | Patient #3 | Patient #4 | Patient #5 | Patient #6

Tumor Vol. = 23 cm³

Tumor Vol. = 8 cm³

Tumor Vol. = 3 cm³

Tumor Vol. = 5 cm³

Tumor Vol. = 2 cm³

Tumor Vol. = 94 cm³

HV (%) calculated on late summed 4D images (TBR > 1.2)

Mon 89.1 23.5 0.0 0.0 16.6 21.7

Wed - 40.4 0.0 0.0 45.2 39.7

Fri - 23.1 0.0 0.0 41.9 18.1

Therapeutic Intervention

SBRT delivery schedule:

- All in one week – M, W, F
- Once a week

2 fractions Week 1 (M, F) and a 3rd fraction in Week 2

Drug clinical trial

SBRT delivery schedule

Hypoxic volume

> X% of tumor or

< X% of tumor

Hypoxic volume

Targeted therapeutic trials:

- Hypoxic radiosensitizers (more effective for SBRT?)
- Hypoxic cytotoxins

Local Control for Early-Stage NSCLC and Brain Mets

Data from literature over past 15 years reporting TCP at ≥ 1 year, fx #, and dose

- 33 studies (19 NSCLC, 14 brain mets) with 2,965 patients (2,028 NSCLC, 937 brain mets)

- 59 dose regimens: 31% single fraction (median # of fractions is 3, max. # of fractions is 15)

Are conventional models valid at high doses?

- LQ is an approximation to more sophisticated kinetic reaction-rate models

What about alternate “high-dose” models?

- Clinical data most consistent with LQ model with heterogeneity in radiosensitivity over the entire dose range

- Addition of extra high-dose terms to standard LQ did not improve agreement with clinical data compared

LQ is an approximation to more sophisticated kinetic reaction-rate models

- LQ and LPL indistinguishable for low-doses and low dose rates

- Predictions begin to deviate above ~5 Gy

- LQ predicts experimental survival data well up to ~10 Gy

- When extrapolating to doses ~15 Gy with LQ, the shape of the survival curve shown in experimental and theoretical studies is different

- Consideration of potential “new biology” in vivo

What about single-fraction vs. multi-fraction?

- For brain metastases the analysis suggests that multiple fractions have higher effectiveness than single fractions.
- No evidence that single fractions are more effective than multiple fractions.

Consistent with expectations in context of tumor hypoxia and reoxygenation as predicted by conventional models (IJROBP 2011; 79: 1188-1195).

Pre-treatment imaging of hypoxia may provide a clearer picture.

Is there an optimal time course for lung SBRT?

Hypothesis: Nonconsecutive SBRT fraction delivery may be advantageous.

- Loyola University Chicago:
 - Hypothesis: Nonconsecutive SBRT fraction delivery may be advantageous.
 - Retrospective analysis comparing local controlled (LC) patients treated with consecutive daily fractions (5x5 Gy) vs. nonconsecutive two fractions (2x5 Gy) delivered two times per week.
 - Analysis of 127 stage I NSCLC patients (17 tumors).
 - LC was measured within 6 months of treatment completion.

- Hypothesis: Nonconsecutive SBRT fraction delivery may be advantageous.

- 5x5 Gy SBRT delivered over non-consecutive days yields similar LC rate to consecutive 5x5 Gy.

Hypothesis:
- Nonconsecutive SBRT fraction delivery may be advantageous.

- Loyola University Chicago:

- Hypothesis: Nonconsecutive SBRT fraction delivery may be advantageous.

- Retrospective analysis comparing local controlled (LC) patients treated with consecutive daily fractions (5x5 Gy) vs. nonconsecutive two fractions (2x5 Gy) delivered two times per week.

- 127 stage I NSCLC patients (17 tumors) treated within 6 months of treatment completion.

- LC rate = 94.6% for consecutive 5x5 Gy.

- LC rate = 67.4% for nonconsecutive 5x5 Gy.

Hypothesis: Nonconsecutive SBRT fraction delivery may be advantageous.

Hypothesis: Nonconsecutive SBRT fraction delivery may be advantageous.

- Hypothesis: Nonconsecutive SBRT fraction delivery may be advantageous.

- Loyola University Chicago:

- Hypothesis: Nonconsecutive SBRT fraction delivery may be advantageous.

- Retrospective analysis comparing local controlled (LC) patients treated with consecutive daily fractions (5x5 Gy) vs. nonconsecutive two fractions (2x5 Gy) delivered two times per week.

- 127 stage I NSCLC patients (17 tumors) treated within 6 months of treatment completion.

- LC rate = 94.6% for consecutive 5x5 Gy.

- LC rate = 67.4% for nonconsecutive 5x5 Gy.

Hypothesis: Nonconsecutive SBRT fraction delivery may be advantageous.

Hypothesis: Nonconsecutive SBRT fraction delivery may be advantageous.

Conclusions

1. Available clinical data for early-stage NSCLC and brain mets provide no clear evidence that “new biology” is needed to explain clinical outcomes from SBRT.
 - Need for better, i.e., more homogenous, clinical data to continue to test hypothesis.

2. Caution should still be taken with extreme hypofractionation due to effects of hypoxia.
 - High single doses may have the potential to induce hypoxia → clinical impact is unclear.

3. LQ appears to provide reasonable approximation at SRT doses.

4. Must practice evidence-based medicine.
 - Clinical data is gold standard → must be skeptical of simplified models, understand limitations.

Acknowledgements

- **Yale University**
 - Roy D. Dickler, M.D., Ph.D.
 - Richard E. Carson, Ph.D.
 - Olu OJ. Roache, M.Sc.

- **Stanford University**
 - J. Martin Brown, Ph.D.
 - Paul J. Keall, Ph.D.

- **Columbia University**
 - David J. Brenner, Ph.D.
 - Igor Shuryak, M.D., Ph.D.

Work supported in part by the Yale Cancer Center (YCC) and the Yale PET Center.