

Real-time adaptive radiotherapy

Jeremy Booth

Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney Australia

Institute of Medical Physics, University of Sydney

Jeremy.Booth@health.nsw.gov.au

Overview

- Definitions/context
- What's in the box?
- How well does it work?
- Future?

Jeremy.Booth@health.nsw.gov.au

Real-time adaptive definition

- To adapt radiotherapy delivery to account for intratreatment anatomic change - during treatment
 - May include inter-fraction variation implicitly

Jeremy.Booth@health.nsw.gov.au

Some more definitions

- **Real-time**: the latency or response time of motion is less than the timescale of significant changes in the position during the response time
- Latency: time lag between target motion and the complete execution of the system response
- **Temporal prediction:** estimation of target position at some time in the future ~latency
- Tumour trailing: delivery adapts to baseline shifts
- **Tracking:** increasingly used to refer to monitoring motion, has/is used to refer to adaptation

Clinical drivers for real-time adaptation

- Safety
 - \Rightarrow Patient-connected
 - \Rightarrow Deliver planned dose
- Efficient workflow / Automation
 - \Rightarrow Improve consistency
- Compact dose / Accuracy
 - \Rightarrow Reduce OAR dose

Jeremy.Booth@health.nsw.gov.au

AAPM • San Antonio • 18 July 2019

Jeremy.Booth@health.nsw.gov.au

Lung tracking reduces PTV/MLD

System	Peak-to-peak motion (cm)	PTV reduction	MLD reduction	Reference
Cyberknife	0.2 – 2.3	16 - 49%	Nr	Chan et al 2013
Vero	0.2 – 2.6	16 - 53%	Nr	Depuydt et al 2014
MLC tracking	0.3 -1.8	2 - 47%	7 - 38%	Booth et al ESTRO 2019

Notes

• Guides towards safety for retreatment, larger tumours, central tumours, higher target doses

Jeremy.Booth@health.nsw.gov.au

MLC tracking meets the challenge of dose

MLC tracking for dose painting moving targets (prostate, liver, pancreas)

Colvill IJROBP 2015

High dose GTV defined from mMRI + PSMA PET

Jeremy.Booth@health.nsw.gov.au

Isotoxic Liver SABR prescription

- Liver SABR
 - Goal: 50Gy/5#
 - Target dose constrained by normal liver tolerance
- Gargett etal simulated gating/tracking
 - 13/20 cases had constrained target dose
 - 11/13 cases reached target dose with realtime adaptation
 - Further dose escalation possible

Gargett et al RadOnc 2019

Standard Free-breathinç 42.5Gy/5#

Motion management 50Gy/5#

Jeremy.Booth@health.nsw.gov.au

Real-time adaptive action loop

Jeremy.Booth@health.nsw.gov.au

Real-time tumour monitoring systems

Overview of Technologies

- Motion monitoring (tracking) method
 - Type of information
 - Point, shape, volume
 - Surrogate, target/OAR
 - Frequency of information
- Adaptation method
 - Gating, Robotics, MLC tracking, Couch tracking, Gimbal tracking, Combinations
 - Generally incorporates the prediction component

Adapt treatment (beam, couch)

History of real-time adaptation

Jeremy.Booth@health.nsw.gov.au

AAPM • San Antonio • 18 July 2019

NORTHERN

SYDNE

CENTRE

Gating

- Gating stops the treatment when the target moves outside a pre-defined tolerance eg 2mm
- Available clinically with a range of motion triggers
 - First papers from 1989 with research systems
 - Abdominal compression sensors, RT-RT
- Commonly applied to SABR techniques, DIBH
- Duty cycle is the proportion of time beam in on and is a compromise to residual motion
- Reference: TG76 (2006), currently in revision

Robotics: AccuRay Cyberknife

- Utilises dual kV and optical
- Robotic arm sychronises linac targeting with detected motion
- Motion model correlates optical surface with target motion, updates model regularly
- Synchrony system detects direct tumour location (markerless)
- Planning on single phase of 4DCT

Couch Tracking

- Couch position adapts to synchronise with motion
 - Single target
 - 6DoF
 - Range of couch motion
- Not commercialised, no patients treated

Gimbal tracking (VERO)

- Detects motion using dual kV and optical surface
- Tracks with gimbal ring gantry and couch
- Utilises a motion model for correlation of external to internal motion
- No longer in production

MLC tracking

- MLC adapts shape to synchronise with motion
 - Real-time optimisation of leaf position
 - Area of under dose and over dose
 - Unique ability to track deformation and multiple targets
 - Conformity linked to leaf speed, width
 - Accuracy dependent on plan complexity
- Planning on single phase of 4DCT, no ITV

Image-based tracks DVF

Deformation

Lung and node Prostate and node (ethics filed)

Jeremy.Booth@health.nsw.gov.au

Example MLC tracking control loop

Jeremy.Booth@health.nsw.gov.au

Clinical status of MLC tracking

All with University of Sydney MLC tracking software (latency 220ms); All with Varian Trilogy linac, Millennium MLC

Jeremy.Booth@health.nsw.gov.au

MR-guided MLC tracking

- MRI volumetric tracking
- Superb soft tissue contrast
- An MLC tracking algorithm developed at Royal Marsden/DKFZ for deformable targets (Fast et al 2014)
- Implemented on Elekta Unity (Glitzner et al 2019)
 - Latency of 347ms/4Hz and 204/8Hz.
- Potential for real-time functional imaging

Combination - RadiXact

- Radixact detects motion from kV and surface
- Utilising Synchrony to track lung, liver, pancreas...
- Treats with helical beam
- RadiXact adapts with jaw, binary MLC and couch
- Latency 70ms

Jeremy.Booth@health.nsw.gov.au

Uncertainty for real-time adaptive RT

NORTHERN SYDNEY CANCER CENTRE

- 4DCT & lack of 4D planning
- Tumour delineation
- Surrogate vs direct tumour tracking
- Latency vs Prediction accuracy
- MLC tracking accuracy
 - Real-time monitoring accuracy
 - Leaf fitting (leaf width)
 - Leaf adjustment (leaf speed)

Understanding MLC tracking

- Target localization error
 - caused by system latency and uncertainties in the monitoring system
- Leaf fitting error
 - occurs when the desired MLC shape is fitted onto the closest physically possible MLC shape and is caused by the finite leaf width.
- Leaf adjustment error
 - the difference between the actual and the requested leaf positions and is caused by the finite leaf speed.

Jeremy.Booth@health.nsw.gov.au

Clinical Challenges from 4DCT

- Planned on exhale phase of 4DCT
 - 4D treatment with 3D planning
- 4DCT can under estimate motion
 Leads to potential geographic miss
- 4DCT can over estimate motion
 - Leads to larger PTV, higher lung dose
- ?4D planning
- ?Improved 4DCT image quality

MLC tracking lung Patient 2: beacon motion in SI direction during treatment

Clinical challenges with fiducials

- 1. Potential toxicity with implantation
 - Bronchoscopic under II guidance: 0/17 toxicity
 - Benchmarking markerless tracking (Shieh et al 2017)
- 2. Fiducials provide a **surrogate** for tumour position
 - Surrogacy at 4DCT and treatment (fluoro)

Slide courtesy of Nick Hardcastle

Jeremy.Booth@health.nsw.gov.au

QA of real-time adaptive system

SYDNEY CANCER CENTRE

- Published guides for Cyberknife/Synchrony and MLC tracking
- System integrity
 - End to end test with hidden target and known motion(s)
 - Latency measurement
- Real-time QA
 - Interlocks for unexpected conditions ie target outside tracking area, comms error, large/fast motion
 - Potential for EPID-based aperture check or back-projected dose estimation
- Retrospective dose reconstruction

Future Outlook

- Emerging technologies
 - Faster data processing / algorithms
 - Artificial intelligence
 - Automation
 - Bridge gaps in information
 - Evolution of geometric margins towards probabilistic
 - Real-time dose prediction \Rightarrow dose-guided adaptation
 - Real-time functional imaging \Rightarrow biology-guided adaptation

Summary

- Real-time adaptation available for 30 years (gating) and 20 years (tracking)
 - currently first generation: adapting to rigid motion of target
- Real-time adaptation well aligned to emerging technologies
 - Automation, machine learning, real-time volumetric imaging
 - Implicitly includes 'plan of the day' / inter-fraction change
- Next generations will consider:
 - Deforming anatomy (tumour and OAR)
 - Dose/biology-guidance