

Introduction

2 Radiation Oncology UTSouthwester Modeal Center

AI Is Changing The World

Al Is Going to Transform Healthcare

Machines Treating Patients? It's Already Happening

http://time.com/5556339/artificial-intelligence-robots-medicine/

Medical Artificial Intelligence and Automation Lab

Al for Treatment Planning - Big Picture

UTSouth

Potential Applications of AI in Treatment Planning

Al for Treatment Planning - Dose Distribution Prediction

8 Radiation Oncology

UT Southwestern Medical Center

3D Dose Prediction Using Deep Learning

- Predict 3D radiation dose distribution based on
 Patient's anatomy and physician's prescription
- <u>Hypothesis</u>: Patients of similar medical conditions should have a similar relationship between optimal radiation dose and patient anatomy and this relationship can be learned with a deep neural network

Nguyen, ..., Jiang, (2017) arXiv:1709.09233; *Sci Rep*. 9(1):1076, 2019.

Radiation Oncology © Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2017 Met

Test Results for A Prostate Case (IMRT)

Test Results for A Prostate Case (IMRT)

Prostate IMRT Dose Prediction w/ Different Losses

Tested 4 types of losses

- MSE
- MSE + DVH
- MSE + ADV (adversarial loss)
- MSE + DVH + ADV
- DVH loss
- $Loss_{DVH}(D_{true}, D_{pred}, M) = \frac{1}{n_s} \sum_{s} \frac{1}{n_b} \left\| \widehat{DVH}_s(D_{true}, M_s) \widehat{DVH}_s(D_{pred}, M_s) \right\|_2^2$

UTSouthwes

- ADV loss w/ LSGAN formulation
 - $\frac{minimize}{N_D} \; \frac{1}{2} \|N_D(y_{true}) b\|_2^2 + \frac{1}{2} \|N_D\big(N_G(x)\big) a\|_2^2$
 - $\frac{\min inimize}{N_G} \frac{1}{2} \|N_D(N_G(x)) c\|_2^2$

Results for Different Losses

H&N VMAT Dose Prediction w/ HD U-NET

Dose Prediction w/ Different Planner Styles

- Style A (Dose Conformality Oriented)
- balance between dose conformity and OAR sparing
- Style B (OAR Sparing Oriented)
 - utilize tuning structures and hard constraints to pull dose away from specific OARs

		Style A	Style B
	Training dataset	65 cases	132 cases
	Cross validation	60 cases	123 cases
	Test cases	5 cases	9 cases
15	Radiation Oncology	© Roya Kandalan and Steve Jiang,, MAI	A Lab, 2019 UT Southwestern Medical Center

Model Training

- U-Net with group normalization
- Train a general model using all training dataset
- Adapt the trained general model to each sub-dataset (A/B)

Result w/ Dataset A: General model vs Model A

Prediction Error (normalized to prescription dose)	General Model	Model A
PTV Coverage	D98	%1	%0.0
	D99	%0.8	%0.4
Mean Dose Error	PTV	%2	%1
	Body	%0.4	%0.4
	Bladder	%0.8	%0.6
	Rectum	% 1.2	%1.6
	Left Femur	%1.4	%0
	Right Femur	%2.2	%0.8
			UTSouthwestern

Result w/ Dataset B: General model vs Model B

Result w/ Dataset B: General model vs Model B

Prediction Error (r	normalized to prescription dose)	General Model	Model B
PTV Coverage	D98	%0.2	%1.4
	D99	%0.2	%1.2
Mean Dose Error	PTV	%1	%0.5
	Body	%0.04	%0.15
	Bladder	%1.03	%0.92
	Rectum	%3.7	%2.1
	Left Femur	%2	%0.8
	Right Femur	%1.4	%1.2

20	Radiation Oncology	Ø Roya Kandalan and Steve Jiang,, MAIA Lab, 2019	UT Southwestern Medical Center
----	--------------------	--	-----------------------------------

Dose Prediction w/ Variable Beam Angles

Dose Prediction w/ Variable Beam Angles

Dose Prediction w/ Variable Beam Angles

Dose Prediction w/ Variable Desired Tradeoffs

Dose Prediction w/ Variable Desired Tradeoffs

Relational Autoencoder for Similar Patient Retrieval

Al for Treatment Planning - Pareto Surface Navigation

UTSouth

Real Time Inference on Pareto Surface

Pareto Surface Modeling w/ Various Beam Angles

Generating Pareto Front Using Conditional GAN

Al for Treatment Planning - Hyper-parameter Tuning w/ DRL

31	Radiation Oncology	UT Southweste Medical Cer

HDR Planning w/ DRL Based Organ Weight Tuning

IMRT Planning w/ DRL Based Hyper-Parameter Tuning

UTSout

Al for Treatment Planning - Dose Calculation

34 Radiation Oncology		UT Southwestern Medical Center	
	i		
Dose Calculat	ion using Deep Leal	ning	
 Dose calculation fluence maps realized large dataset for 	using deep learning direc quires a complicated DNN training	tly from and a	
 Combining 1st or deep learning ca 	der approximation (ray tra n greatly reduce the comp	cing) with lexity	
 A completely dif secondary dose 	ferent system so it is good check	for	
 If accurate and faintermediate sternediate 	ast, can also be used for o dose calculation during p	blan	
* *	· · · · · · · · · · · · · · · ·		
ID Unet 🛛 📲 📲			

Dose Calculation using DL (Prostate)

Radiation Oncology © Penelope Xing, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018

Patient- specific CT	Conversion: Fr	om AAA to	Acuros XB
	Hierarchically Dense U-Net	AXB Dose	
AAA Dose		-	
	 Preliminary work 120 lung cases in Eclip Non-coplanar 3D CRT, Rx dose: 24 Gy to 60 C Energy: 6 MV, 10 MV, 6 	ose (72 training/18 3D conformal arc, sy xFFF, and 10xFFF	validation/30 testing) IMRT, and VMAT plans
Dose Maps	Gamma Pass rates	MSE	% of voxels over 3% dose diff of Rx dose
Original AAA dose	(97.7±2.1)% (86.0±9.1	8)% 0.52±0.26	(2.01±1.19)%
Converted AXB dose	(99.9±0.4)% (98.3±1.	7)% 0.16±0.10	(0.46±0.46)%
37 Radiation Or	Cology © Penelope Xing, Ph.D. an	i You Zhang Ph.D., MAIA Lab, 20	UT Southwestern Medical Center

Convert PB Dose to MC Dose for Proton RT

All Patient Data from MGH Proton Center

 PB dose calculated with XiO, MC dose calculated with TOPAS 						
	Head &Neck	Liver	Prostate	Lung	Total	
Number of patients	90	93	75	32	290	
Training & Validation	72	75	62	26	235	
Testing	18	18	13	6	55	

Hierarchically Dense U-Net (HD U-net) w/ patch-based training

Pencil Beam Dos CT		d 	> > At MC Dose
1			
	Radiation Oncology	© Chao Wu and Steve Jiang, MAIA Lab, 2019	UT Southwestern Medical Center

Two Methods

Four Experiments

Results: Gamma Index and MSE

Head & Neck	Gamma Index (1mm/1%)	MSE
Pencil beam dose	(72.8±5.8)%	5.05±3.89
Experiment 1 (Method 1 + Site specific data)	(83.3±3.8)%	2.07±1.50
Experiment 2 (Method 1 + All sites data)	(83.9±4.1)%	2.11±1.59
Experiment 3 (Method 2 + Site specific data)	(92.2±2.6)%	0.83±0.68
Experiment 4 (Method 2 + All sites data)	(92.3±2.8)%	0.77±0.61

Liver	Gamma Index (1mm/1%)	MSE
Pencil beam dose	(78.6±5.4)%	1.74±0.53
Experiment 1 (Method 1 + Site specific data)	(88.3±5.0)%	0.61 ± 0.42
Experiment 2 (Method 1 + All sites data)	(88.9±4.0)%	0.63±0.39
Experiment 3 (Method 2 + Site specific data)	(92.2±3.5)%	0.38±0.20
Experiment 4 (Method 2 + All sites data)	(92.2±3.3)%	0.32 ± 0.17
41 Radiation Oncology ©C	hao Wu and Steve Jiang, MAIA Lab. 2019	

Results: Gamma Index and MSE

Gamma Index (1mm/1%)	MSE
(65.5±5.3)%	2.94±1.70
(73.2±5.5)%	2.02 ± 1.80
(76.3±6.3)%	1.88±1.93
(85.5±3.6)%	0.68 ± 0.55
(88.6±3.6)%	0.50±0.39
	Gamma Index (1mm/1%) (65.5±5.3)% (76.3±5.5)% (76.3±6.3)% (85.5±3.6)% (88.6±3.6)%

Prostate	Gamma Index (1mm/1%)	MSE
Pencil beam dose	(73.6±2.5)%	2.17±1.03
Experiment 1 (Method 1 + Site specific data)	(99.0±0.5)%	0.19±0.11
Experiment 2 (Method 1 + All sites data)	(98.4±1.0)%	0.20 ± 0.12
Experiment 3 (Method 2 + Site specific data)	(99.4±1.0)%	0.11±0.05
Experiment 4 (Method 2 + All sites data)	(99.3±0.6)%	0.13±0.10
42 Radiation Oncology ©	Chao Wu and Steve Jiang, MAIA Lab, 2019	UT Southwestern Medical Center

Al for Treatment Planning

- Beam Angle Optimization

_

Al for Beam Orientation Optimization (BOO)

- Develop an AlphaGo type of DL algorithm
- reinforcement learning (RL) policy network
- Monte Carlo Tree Search (MCTS)
- Go movements → CyberKnife robot sequence

Deep BOO for 4Pi/CK Optimization

Traditional BOO algorithms

- requires pre-dose calculation for a large number of candidate beams
- Difficulty to explore the huge solution space

Deep BOO (v1)

- Use column generation (CG) to train a supervised learning (SL) policy network
- Perform guided Monte Carlo Tree Search with pretrained SL policy network

Example prediction: selecting the 4th beam

Deep BOO vs Column Generation

UT Southwes Medical C

Al for Treatment Planning

- Direct MR based Planning

49	Radiation Oncology	UT Southwestern Medical Center

CT Synthetization from MRI

- <u>Unpaired</u> CT and MR images from 77 brain patients who underwent brain tumor radiotherapy
- CT images were acquired with a 512x512 matrix and voxel size 0.68mm×0.68mm×1.50mm
- MR images were acquired at 1.5T using a post-gadolinium 2D T1weighted spin echo sequence with TE/TR = 15/3500 ms

DCGAN - Deep convolutional generative adversarial network

Radiation Oncology © Samaneh Kazemířar, Ph.D. and Amir Owrangi, Ph.D., MAIA Lab, 2018 Medical Center Medical Center

