

Image-guidance vs Adaptive Radiotherapy

- Image-guidance radiotherapy (IGRT)
 - Goal: Stay a pre-determined course
 - Different imaging modalities (CT/PET/MRI) are used to guide planning (target definition) and delivery (localization)
- Adaptive radiotherapy (ART)

ADIATION ONCOLOGY

- Goal: Make changes in the face of evolving information
- Repeated measurements of the patient's geometry (imaging) and/or physiology (biomarkers) during the treatment so that a more patient-specific treatment can be delivered.

painting Luiza Ana Maria Olte	treatm anu 🛎, Fréderic I	ents for Duprez, Wilfried De	head-an	lated adap d-neck can uts, Tom Vercauteren, W. er De Gersem	cer	
Pages 262-268 Received '				er De dersem <u>Lusnowiess</u>		
	Pat number	Fractions 1-10	Fractions 11-20	Fractions 21-30/32	Total dose	NID2
Relient group 1 (CTV _{IR})	Pat number	Fractions 1-10	Fractions 11-20	Fractions 21-30/32	Total dose 72.5-90.9	NID2 76.5-108.3
Patient group 1 (CTV ₁₀) Patient group II (GTV)						
		10×(2.16-3.0)	10 × [2.5-3.5]	12×2.16	72.5-90.9	76.5-108.3
Patient group II (GTV)	6	10×(2.16-3.0) 10×(2.5-3.5)	10×[2.5-3.5] 10×[2.5-3.5]	12×2.16 12×2.16	72.5-90.9 75.9-95.9	76.5-108.3 81.8-117.4
Patient group II (GTV) Patient group III (GTV)	6	10×(2.16-3.0) 10×(2.5-3.5) 10×(2.0-3.5)	10×[2.5-3.5] 10×[2.5-3.5] 10×[2.0-2.5]	12×2.16 12×2.16 10×(2.6-2.5)	72.5-90.9 75.9-95.9 60.0-85.0	76.5-108.3 81.8-117.8 60.0-109.5

Machine learning for ART

- · Supervised learning
 - Source: input → output pairs
 - Learning: Training + testing phases
 - Applications: Classification, regression
- Reinforcement learning
 - Source: input data + agent (critic)
 - Learning: exploration (environment) and exploitation
 - (action)

TION ONCOLOGY

RADIATION ONCOLOGY

- Applications: optimizing decision making

Example: Adaptive Decision Making in Liver Cancer

_
_
_

Conclusions

- Artificial intelligence/machine learning offers new opportunities to develop better understanding of medical physics/radiation oncology processes and improve their workflow
- Al/ML approaches are uniquely positioned to improve adaptation in radiotherapy from heuristics to data driven realm.
- Adaptive radiotherapy implies improved outcome prediction (e.g., supervised learning) and optimizing decision making (reinforcement learning).
- Larger and multi-institutional datasets are necessary to realize the potential of AI in ART.

