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Image-guidance vs Adaptive Radiotherapy

Image-guidance radiotherapy (IGRT)

— Goal: Stay a pre-determined course

— Different imaging modalities (CT/PET/MRI) are used to guide
planning (target definition) and delivery (localization)

» Adaptive radiotherapy (ART)

— Goal: Make changes in the face of evolving information

— Repeated measurements of the patient’'s geometry (imaging)

and/or physiology (biomarkers) during the treatment so that a
more patient-specific treatment can be delivered.
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ART Principles
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ART Examples lli

ORIGINAL ARTICLES: HEAD AND NECK CANCER

Late mucosal ulcers in dose-escalated adaptive dose-
painting treatments for head-and-neck cancer
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What? - ART in era of -omics
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hich? - radiotherapy response estimates

Radiation response is multi-factorial and depend on: radiation dose and
patients’ physical, clinical, biological and genomic characteristics before
and during the course of radiotherapy
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A GUIDE TO OUTCOME
MODELING IN RADIOTHERAPY
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How? - optimize RT adaptation decision?
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Precision Radiation Oncology
(Personalized decision support system)

Genomics

Integrative outcome modeling

Optimized decision making
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Machine learning for ART Wadineeaming

RadiatiorKOnco\ogy

Supervised learning

— Source: input =» output pairs

— Learning: Training + testing phases

— Applications: Classification, regression
Reinforcement learning

— Source: input data + agent (critic)

— Learning: exploration (environment) and exploitation
(action)

— Applications: optimizing decision making
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Example: Adaptive Decision Making in Li

Dataset

— 182 HCC liver SBRT tumors (10 Gyx5) from 120 patients
— 45 cases on non-adaptive

— 137 cases on adaptive protocols

« Adaptation was based on liver function using a split-course of 3+2

i i Adapt?
fractions with a month break === ap

3fx 2fx

Candidate variables

«  Clinical (age, gender, stage, etc)
*  Dosimetric (Bio-corrected gEUD of tumor/liver, fx, etc)
*  Plasma biomarkers (cytokines, miRNA)
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RL Application to ART

* RT environment Biological variables (cytokines)
— Patient's clinical, dosimetric, and biological covariates ~ ~ Irermnddiow acr (TG
* RL objective (reward) ~ Homone growth factor (HGF)
— CD40 ligand

— Complication-free tumor control (P*)
« P+=TCPx(1-NTCP)

— TCP as local control

— NTCP change in ALBI score by 1 point
Optimization algorithm: Q-Learning
— Greedy search approach to solve Bellman’s principle
of optimality with:
+ a simple regression model of state-action mapping

Radiotherapy
(variables)

Response
(TcPINTCP)
uonoy
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etrospective RL analysis

RL with a dosimetric model

Tumor case " Tumorcase
Adaptation recommendation: + Adaptation recommendation:
~ 71% for split-courses
—~ 70% for continuous-courses
Average adaptation probabiliy:
~ Amplitude=0.59:0.16

~ 64% for split-courses

—  67% for continuous-
courses

Average adaptation probability:
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Prospective RL analysis

Split course p N
—RL adaptation decision

a0 s P Z
Tum
Adaptati ommendation:

- 90% for split-courses

~ 100% for continuous-courses
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Example II: ART in lung cancer
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Planning
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Initial Plan to Pre-TxCT and PET Targets Adaptive Plan to Mid-Tx PET Target

Kong, JAMA,
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Adaptive Decision Making with Deep Learning |
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Adaptive Decision Making with Deep Learning [I—Need more data?
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Adaptive Decision Making with Deep Learning IV
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Conclusions

Artificial intelligence/machine learning offers new opportunities
to develop better understanding of medical physics/radiation
oncology processes and improve their workflow

AI/ML approaches are uniquely positioned to improve
adaptation in radiotherapy from heuristics to data driven realm.
Adaptive radiotherapy implies improved outcome prediction
(e.g., supervised learning) and optimizing decision making
(reinforcement learning).

Larger and multi-institutional datasets are necessary to realize
the potential of Al in ART.
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