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Image-guidance vs Adaptive Radiotherapy

• Image-guidance radiotherapy (IGRT)
– Goal: Stay a pre-determined course 
– Different imaging modalities (CT/PET/MRI) are used to guide 

planning (target definition) and delivery (localization)  
• Adaptive radiotherapy (ART)

– Goal: Make changes in the face of evolving information
– Repeated measurements of the patient’s geometry (imaging) 

and/or physiology (biomarkers) during the treatment so that a 
more patient-specific treatment can be delivered. 
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ART Principles

Yan, PMB, 1997; Wong, 2007; Yan, Seminars in RO, 2010

Example: patient-specific margins
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Some ART Examples I

Schwartz, IJROBP, 2013

Head & Neck case
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Some ART Examples II

Bentzen & Gregoire, Seminars in RO, 2011
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Some ART Examples III

RADIATION ONCOLOGY

ART Evolution

Tseng, Frontier,  2018
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What? - ART in era of -omics

El Naqa et al., PMB (Journal highlights), 2017



7/12/19

4

RADIATION ONCOLOGY

Which? - radiotherapy response estimates
Radiation response is multi-factorial and depend on: radiation dose and 
patients’ physical, clinical, biological and genomic characteristics before 
and during the course of radiotherapy  
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El Naqa, Methods, 2016
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Outcome modeling 
schemes
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Analytical
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How? - optimize RT adaptation decision?
making?

El Naqa, ASTRO (Best of physics), 2016
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(MDP)
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Precision Radiation Oncology 
(Personalized decision support system)

Integrative outcome modeling

Optimized decision making

El Naqa, JCO-CCI, 2018
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Machine learning for ART

• Supervised learning
– Source: input ➜ output pairs
– Learning: Training  + testing phases
– Applications: Classification, regression

• Reinforcement learning
– Source: input data + agent (critic)
– Learning: exploration (environment) and exploitation 

(action)
– Applications: optimizing decision making

RADIATION ONCOLOGY

• Dataset
– 182 HCC liver SBRT tumors (10 Gyx5) from 120 patients
– 45 cases on non-adaptive 
– 137 cases on adaptive protocols 

• Adaptation was based on liver function using a split-course of 3+2 
fractions with a month break Adapt?

3 fx 2 fx

• Candidate variables
• Clinical (age, gender, stage, etc)
• Dosimetric (Bio-corrected gEUD of tumor/liver, fx, etc)
• Plasma biomarkers (cytokines, miRNA)

Example: Adaptive Decision Making in Liver Cancer
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RL Application to ART
• RT environment

– Patient’s clinical, dosimetric, and biological covariates
• RL objective (reward)

– Complication-free tumor control (P+)
• P+=TCPx(1-NTCP)

– TCP as local control

– NTCP change in ALBI score by 1 point

• Optimization algorithm: Q-Learning
– Greedy search approach to solve Bellman’s principle 

of optimality with: 
• a simple regression model of state-action mapping 

Biological variables (cytokines)
– )Transforming growth factor (TGF-β1)
– Eotaxin (CCL11)
– Hormone growth factor (HGF)
– CD40 ligand 

RADIATION ONCOLOGY

Dosimetric NTCP modeling using LKB
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El Naqa et al, IJROBP, 2018
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Dose modifying effect of cytokines on LKB-ALBI
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Dose modifying effect of cytokines + imaging
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El Naqa et al, IJROBP, 2018

MRI-DCE 
perfusion
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P+ Estimation

RADIATION ONCOLOGY

Retrospective RL analysis

• Adaptation recommendation:
– 71% for split-courses
– 70% for continuous-courses

• Average adaptation probability:
– Amplitude=0.59±0.16

• Adaptation recommendation:
– 64% for split-courses
– 67% for continuous-

courses
• Average adaptation probability:

– Amplitude=0.64±0.26
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Prospective RL analysis

• Adaptation recom m endation:

– 90%  for split-courses

– 100%  for continuous-courses

• Average adaptation probability:

– Am plitude=0.67±0.17
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Planning Treatme
nt

Reevalua
tion
• Imaging
• Biomarker

Adaptive 
Planning 

Treatme
nt

Example II: ART in lung cancer

Boost 
Region

Courtesy Mike Green/Ben Rosen
Kong, JAMA, 
2017

RADIATION ONCOLOGY Luo et al, Med Phys, 2018  (Editor’s Choice)

Multi-Objective Generative Models 
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Adaptive Decision Making with Deep Learning I 

Tseng, Medical Physics, 2017 (Farrington Daniels Award in MP) 
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Adaptive Decision Making with Deep Learning II—Need more data? 

Synthetic data 
generation 

Tseng, Medical Physics, 2017 (Best 
Paper in  MP) 
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Adaptive Decision Making with Deep Learning III-Transition probability 

State vector

[Dose, SNPs, cytokines, 
radiomics] 

Tseng, Medical Physics, 2017 (Best 
Paper in  MP) 
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Adaptive Decision Making with Deep Learning IV

Tseng, Medical Physics, 2017 (Best 
Paper in  MP) 
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Conclusions
• Artificial intelligence/machine learning offers new opportunities 

to develop better  understanding  of medical physics/radiation 
oncology processes and improve their workflow

• AI/ML approaches are uniquely positioned to improve 
adaptation in radiotherapy from heuristics to data driven realm.

• Adaptive radiotherapy implies improved outcome prediction 
(e.g., supervised learning) and optimizing decision making 
(reinforcement learning).    

• Larger and multi-institutional datasets are necessary to realize 
the potential of AI in ART. 
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Thank You!


