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Bioengineering

• Introduction to image quality (IQ) assessment
• Physical-based measures
• Task-based measures and numerical observers

• Learning stochastic object models (SOM)
• Using inter- and intra- geometric models to learn anatomical SOMs

• Task-based IQ assessment in Radiation Therapy
• Initial characterization and demonstration with simulated CT images

• Summary and future work
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Outline

Bioengineering

• A medical image depicts a spatial or spatial-temporal representation 
of some object properties
• structural or functional properties.
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Medical images

PET                            CT                      PET+CT
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Bioengineering

• A medical imaging system maps an object property to an image.

• Black box description of data-acquisition process:

• Mathematical description:  
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Bioengineering

• An imaging system refers to both the hardware and computational 
components:

• Imaging systems have many tunable parameters that need to be set.
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Bioengineering

• The specification of an imaging system’s parameters will impact the 
produced image.

• Ex: Slice thickness in CT
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Impact of imaging parameters

Thin 1 mm sliceThick 8 mm slice

http://www.mevis-research.de/~hhj/Lunge/xSammlungAnaFr.html#Heart and vessels
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• In MRI, the number of k-space samples to acquire represents a 
tunable parameter.

• It is desirable to minimize the number of measured samples to speed 
up acquisitions.
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Impact of imaging parameters: Example for MRI

24 radials48 radials96 radials

Bioengineering

• In order to optimize the performance of imaging systems, figures-of-merit 
(FOMs)  that describe image quality (IQ) are required. 

• IQ metrics also permit the comparison of information contained in images 
acquired by different imaging modalities.

• IQ metrics can be divided into two broad classes:
• Physical-based IQ measures 

• Task-based IQ measures
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Assessment of image quality

Bioengineering

• Physical measures of IQ are based on the physical and statistical 
characteristics of an image.

• Common measures include:
• Spatial resolution (‘sharpness of image’)

• Image contrast

• Noise level

• Artifact level

• Signal-to-noise and contrast-to-noise ratios

• RMSE (in phantom studies)
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Physical-based IQ measures

May not be easily 
related to the intended 
purpose of the image
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• Physical measures, such as the CNR, do not always correlate with signal 
detectability measures.
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Limitations of physical-based IQ measures: CNR

Bioengineering

• Task-based measures of IQ are advocated for use in evaluation and 
optimization of medical imaging systems

• Task-based measures of IQ quantify the ability of an observer to 
perform specific tasks
• Signal detection
• Parameter estimation

• Radiation therapy tasks:
• Tumor/Organ-at-risk segmentation
• RT treatment planning 
• …
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Task-based measures of IQ

Bioengineering 15

Diagnosis vs. Radiation Therapy Workflow

I see it!

Optimize IQ using 
task-based 
measures

Treatment Planning
Simulation 
Acquisition

Patient Setup 
& Treatment Plan Delivery

Patient treatment 
outcome 
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• Imaging tasks

• Observers

• Knowledge of all sources of randomness in the measured image data

• Sources of randomness in image data:
• Measurement noise

• Variations in the object to-be-imaged

• Stochastic object model (SOM): 
• A mathematical or computational model that describes randomness in the to-be-image object.
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Task-based IQ Assessment

Bioengineering 17

Learning-based SOMs for characterizing anatomical variations

Bioengineering

• Lack of numerical anatomical models to accurately model inter-patient and inter-
organ variations in human anatomy among a broad patient population

• Available databases of high-quality volumetric images and organ contours in RT

• Development of a novel and tractable methodology for learning a SOM and 
generating numerical phantoms from a set of volumetric training images
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Learning-based SOMs for characterizing anatomical variations
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Flowchart of the key steps in SOM creation process

Steven Dolly, Yang Lou, Mark Anastasio, Hua Li*, “Learning-based Stochastic Object Models for Characterizing Anatomical Variations”, Physics in Medicine and
Biology, 2018.

Bioengineering

• Given M approved patient cases, and each contains N organ surfaces,

• Construct the centroid GAD by assuming that the centroids of all N organs follow 
a multi-variate Gaussian distribution:

Mean:                                    Covariance matrix:

PCA analysis:

Sampling to create random realizations:
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Learn the centroid geometric attributes of multiple organs

Bioengineering 21

Learned inter-structural centroid GADs

First two principal components are visualized as line segments, whose length is the variance constrained to +/- 2δ

Centroid Training Set Data Mean Centroid and Centroid Distribution
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• Sampling the GADs:
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Create randomly-generated objects based on the learned GADs

Organ models including prostate, bladder, rectum, femoral heads, pelvic bone, and seminal vesicles are displayed here, with the 
exception of the patient external surface for demonstration of internal organs.

Bioengineering 23

Create randomly-generated objects based on the learned GADs

A sample of 2D cross-sections located at a cut plane inserted in the 3D models of the phantoms

Bioengineering 24

Simulated CT images
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Task-based IQ Assessment in Radiation Therapy: 
Initial characterization and demonstration with simulated CT images

Bioengineering

• First theory developed for task-based IQA in radiation therapy based 
on therapeutic outcomes:

• IQ Figure-of-Merit (FOM):
• AUTOC: the area under the therapy operating characteristic (TOC) curve
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Task-based IQ Assessment in Radiation Therapy

Phys. Med. Biol. 58 (2013) 8197–8213

Bioengineering

• TOC curve:
• Plots of the probability of tumor control (TCP) 

vs. the probability of normal tissue 
complications (NTCP) as the overall dose level 
of a radiation treatment is varied

• Analogy to receiver operating characteristic 
(ROC) curves and their variants

• TOC can defined for a single patient and 
also for a population of patients
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Task-based IQA in Radiation Therapy
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• Empirical estimation of the TCP/NTCP values from the K generated random image 
samples of the j-th patient:

• Over an ensemble of J patients:

28

Task-based IQA in Radiation Therapy

Barrett et al., Physics in Medicine and Biology, 2013.

Bioengineering 29

The general framework of the IQA-in-RT theory implementation

• Medical image simulation

• CT, MRI, etc.

• Image Segmentation

• Automatic, manual, or any 
other algorithms

• Radiobiological modeling

• Equivalent uniform dose (EUD)

• …

• RT Treatment planning & 
optimization 

• IMRT, SBRT, etc. 

• TOC & AUTOC calculation

Steven Dolly, Yang Lou, Mark Anastasio, Hua Li*, “Task-Based Image Quality Assessment in Radiation Therapy: Initial Characterization and Demonstration
with Computer-Simulation Study”, Physics in Medicine and Biology, 2019, in press.

Bioengineering 30

Example Implementation of the IQA-in-RT Framework
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Application 1: Optimization of CT Imaging Dose

Using AUTOC as a FOM for optimizing CT imaging dose, in terms of a relative CTDI_vol

A zoomed-in versionThe full curve

Simulated CT images with varied imaging dose

Bioengineering 32

Application 2: Optimization of CT Image Reconstruction Filter

Using AUTOC as a FOM for optimizing CT image reconstructions by optimizing the filter parameter in FBP reconstruction

Simulated CT images with varied reconstruction filters

A zoomed-in versionThe full curve

Bioengineering 33

Analysis 1: Comparison of AUTOC to other IQA metrics

The AUTOC compared to various IQA metrics for optimizing imaging dose and image reconstructions (the filter parameter)

Optimizing CT imaging dose                                                Optimizing FBP reconstruction filter



7/18/2019

12

Bioengineering 34

AUTOC vs. radiobiological model 
analysis of bias within the 
AUTOC calculation. 

Upper: AUTOC calculations for 
different radiobiological models, 

Lower: AUTOC calculated using 
different model parameters 
according to different prostate 
cancer stages.

Analysis 2: Sources of Bias

Bioengineering 35

Learning SOMs using deep generative models

Bioengineering

• AmbientGAN [Bora, A., et al. ICLR. 2018]

• Discriminator must distinguish between a real measurement 𝐲 and a 
simulated measurement ො𝐲 of the generated image ො𝐱.

• Acquired imaging measurements: 𝐲 = 𝑓𝐧 𝐱 ≡ 𝐻𝐱 + 𝐧.
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AmbientGAN

𝑝(𝑟𝑒𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)
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• Given a well-characterized imaging system f and the detector noise model n, 
AmbientGAN can be employed to learn the distribution of objects directly 
from noisy measurement data.

• Once trained, the generator of the AmbientGAN is the SOM.

• This represents a data-driven approach for learning SOMs from imaging 
measurement data.
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Learning SOMs using AmbientGANs

Weimin Zhou, Sayantan Bhadra, Frank Brooks, Mark Anastasio, “Learning Stochastic Object Model from Noisy Imaing Measurements using AmbientGANs”, SPIE 
Medical Imaging Meeting, 2019.

Bioengineering 38

True vs. generated objects

True objects

Generated (fake) objects produced by the AmbientGAN

Bioengineering 39

Walking in the latent space

𝑮(𝒛𝟎) 𝑮(𝒛𝟏)
Linear interpolation in z 

space: 𝑮(𝒛𝟎+ 𝒕 𝒛𝟏− 𝒛𝟎 )

𝑮(𝐳𝒊)
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• Consider that we have the capability to generate a set of labeled imaging 
measurements (e.g., via a learned SOM) or have access to a large set of labeled 
experimental data. 

• Deep learning-based inference models (e.g., convolutional neural networks -
CNNs) can be employed as numerical observers to assess signal detection-based 
IQ.

• Investigated supervised learning-based methodologies for approximating the 
Ideal Observer and Hotelling Observer test statistics for binary signal detection, 
• Employed Convolutional neural networks (CNNs) and single-layer neural networks (SLNNs) 

respectively.
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Deep classifiers for task-based IQ assessment

Weimin Zhou, Hua Li, Mark Anastasio, “Approximating the Ideal Observer and Hotelling Observer for binary signal detection tasks by use of supervised learning 
methods”, IEEE Trans. on Medical Imaging, 2019.

Bioengineering

• Learned anatomical SOMs by characterizing the variations of human anatomy 
based on patient populations

• Developed the modular computational framework for implementing the task-
based IQA theory in RT

• Investigated the AmbientGAN for learning SOMs from raw imaging 
measurements
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Summary

Bioengineering

• The optimization of medical imaging systems for specific diagnostic and/or 
RT tasks is important but challenging.

• To do so, it is important to:
• Specify a task
• Specify an observer
• Account for all sources of randomness in the image data in the RT workflow

• Unsolved but critical issues:
• Learn realistic SOMs for solving more complex RT applications
• Build connections between computational studies and clinical practice applications
• Approximate the performance of observers for RT applications

• Deep learning methods hold promise for addressing these problems.
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Summary (cont’d)
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