Yevgeniy (Jenia) Vinogradskiy, PhD

University of Colorado Cancer Center

International Journal of Radiation Oncology*Biology*Physics

Volume 33, Issue 1, 30 August 1995, Pages 65-75

Clinical original contribution

The role of three dimensional functional lung imaging in radiation treatment planning: The functional dose-volume histogram

Lawrence B. Marks, M.D. ▲, *, ➡, David P. Spencer, Ph.D.*, George W. Sherouse, Ph.D.*, Gunilla Bentel, R.N., R.T.T.*, Robert Clough*, Karen Vann, R.N.*, Ronald Jaszczak, Ph.D.[†], R.Edward Coleman, M.D.[†], Leonard R. Prosnitz, M.D.*

4DCT-Ventilation

Functional Radiotherapy For Lung Cancer

4DCT-Ventilation

- 4DCT acquired for simulation (reduced time, cost, dose)
- Anatomical + Functional information
- Good spatial resolution

Calculating Ventilation Images

Calculating ventilation maps

4DCT – 10 phases

Calculating Ventilation Images

Link lung voxel elements from inhale to exhale using deformable registration

(Castillo et al., 2010)

$$\frac{Apply \text{ density-change-based equation}}{V_{ex}} = 1000 \frac{\overline{HU}_{in}^{voi} - HU_{ex}}{HU_{ex}(1000 + \overline{HU}_{in}^{voi})}$$

Calculating Ventilation Images

0%

Functional Imaging to Functional Radiotherapy: Validation

Castillo et al - SPECT

Vinogradskiy et al - VQ scans

Functional radiotherapy example with CT Ventilation

Predicting pneumonitis: dose + function > dose ???

- 96 NSCLC patients
- Radiation pneumonitis toxicity information using CTCAE grading
- Calculated dose metrics
 - Mean lung dose
 - V20 Gy = Volume of lung receiving 20 Gy or higher
- Calculated dose + function metrics
 - Functionally weighted mean lung dose
 - FV20 Gy = Amount of functioning lung getting 20 Gy or higher

4DCT-ventilation conformal avoidance – Will it work?

Ability of dose and dose + function metrics to predict for grade 3+ radiation pneumonitis: area under the curve (AUC) and logistic regression (Vinogradskiy et al 2013, Faught et al 2017)

CT Ventilation Functional Radiotherapy Clinical Trial

- 67 lung cancer patients at University of Colorado + William Beaumont (NCT02528942)
- Use 4DCT to calculate ventilation imaging
- Use 4DCT-ventilation to design functional radiation plans
- Reduce functional dose metrics using favorable arc geometry + optimization
- Single-arm, early phase trial looking at feasibility, safety, toxicity rates to be compared to current standard of care techniques

Functional Plan

Inclusion/Exclusion Criteria

- Trial inclusion/exclusion criteria
 - No SBRT, No palliative RT
 - Definitive Rx dose ≥ 45Gy
 - Planned concurrent chemotherapy regimen
 - Image heterogeneity criteria

Trial Design

- Phase II study, compare functional avoidance against historical control
- Primary endpoint: grade ≥ 2 Radiation Pneumonitis
- Hypothesis: Rate of grade ≥ 2 Radiation Pneumonitis can be reduced to 12% with functional radiotherapy compared to 25% rate of grade ≥ 2 Radiation Pneumonitis with historical control
- Simon's Two-Stage design
- 67 patient total enrollment, futility analysis at 17 patients

Outcome assessments

- Assess lung function in a variety of ways
 - CTCAE Toxicity (Pulmonary toxicity, pneumonitis, esophagitis)
 - PFTs
 - QOL Questionnaires
 - Imaging: CT, 4DCT-Ventilation, PET, VQ

Implementation: Treatment planning

Structure-based treatment planning

Implementation: Treatment planning

- Start with standard (non-functional) plan, proceed to functional plan using favorable arc geometry + optimization techniques
- Planning priorities 1) Target coverage 2) OAR constraints 3) Reducing dose to functional lung

Implementation: Adaptive planning

- Image guidance per institutional protocol (CBCT daily, 4D CBCT @ Beaumont)
- Adaptive planning per attending discretion
- If an adaptive plan is needed, a 4DCT is done and a functional adaptive plan is made

Multi (2) – Institution Trial Credentialing

- Identical versions of CT Ventilation code installed at both institutions
- Site Initiation Visits performed at both institutions
- CT ventilation physicist (+ backup) identified and trained at both institutions
- 3 sample CT ventilation cases run at both institutions, evaluated for reproducibility

Feasibility: Trial Enrollment

- 95 patients consented in ~2.5 years
- 62 evaluable patients
- Trial met futility criteria, progressed with accrual
- 8 (8.4%) ineligible per imaging criteria

International Journal of Radiation Oncology*Biology*Physics Volume 102, Issue 4, 15 November 2018, Pages 1357-1365

Imaging to Prevent Radiation Sequelae

Interim Analysis of a Two-Institution, Prospective Clinical Trial of 4DCT-Ventilation-based Functional Avoidance Radiation Therapy

Yevgeniy Vinogradskiy PhD * A 🖾, Chad G. Rusthoven MD *, Leah Schubert PhD *, Bernard Jones PhD *, Austin Faught PhD [†], Richard Castillo PhD [‡], Edward Castillo PhD [§], Laurie E. Gaspar MD, MBA *, Jennifer Kwak MD ^{II}, Timothy Waxweiler MD *, Michele Dougherty PhD [¶], Dexiang Gao PhD [#], Craig Stevens MD, PhD [§], Moyed Miften PhD *, Brian Kavanagh MD, MPH *, Thomas Guerrero MD, PhD [§], Inga Grills MD [§]

Patient plan example

30Gy 20Gy 10Gy

Functional Plan

Non-Functional Plan

Functional V20 Trial Dosimetry

Mean Improvement in Functional V20: 3.2% [0.1% to 7.9%]

Conformal Avoidance: Future/On-going work

SBRT Conformal Avoidance

J Bayouth, T Patton, S Gerard, G Christensen, A Baschnagel, & J Reinhardt. Clinical Application of a Lung Function Planning Technique Designed to Improve Toxicity (2017), Med. Phys., 44: 2721–3318. doi:10.1002/mp.12304

Proton Conformal Avoidance

M Dougherty

Improved calculation robustness

SR Bowen, J Zeng, University of Washington

Thank you

University of Colorado

Austin Faught PhD Leah Schubert PhD Bernard Jones PhD Moyed Miften PhD Laurie Gaspar MD Chad Rusthoven MD Brian Kavanagh MD, MPH

William Beaumont Hospital

Michele Dougherty PhD Edward Castillo PhD Craig Stevens MD Inga Grills MD Thomas Guerrero MD, PhD

Emory University Richard Castillo PhD

Funding: R01CA200817, K01CA181292