

Functional Imaging Quantitation for Radiation Therapy Planning in Head and Neck Cancer

John Buatti, MD Department of Radiation Oncology University of Iowa

Specific Aims

- Specific Aim 2:
- Develop novel semi-automated tools for reproducible tumor definitions applicable to quantitative image-based response assessment that will be compared with manual methods.

Image Analysis Output

- 1. Volume of interest (VOI) masks for structures with uptake:
 - Reference regions (similar to PERCIST⁺)
 - Primary cancer
 - Lymph nodes
 - Etc.
- 2. Quantitative indices derived from segmented VOIs:
 - SUVmax, SUVpeak, SUVaverage, Volume, Metabolic Tumor Volume (MTV), ...
 - Indices may also be based on CT data * R.Wahl et al. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009.

Advantages of Approach

• Flexibility:

NIVERSITY

- switch from
 - MTV \rightarrow SUVpeak
 - reference region: liver \rightarrow cerebellum
 - •
- New quantitative indices can be calculated retrospectively
- If outcome data or surrogate end points are available:
 - Select indices utilizing machine learning techniques
- Transparent process
- Digital volumetric models for RT targeting
 - Q: Why not frequently utilized?

Segmentation Approach

 \rightarrow key for success (usability)

Automated Reference VOI Generation

- Methods for
 - Cerebellum (full)
 - Liver (tri-axial ellipsoid)
 - Aortic arch (tube, CT image)
- "Search regions" based on a brain segmentation
 - Gray-value threshold, morphology, size analysis

Cerebellum VOI Algorithm

- Based on a Robust Active Shape Model
- Learn shapes of cerebella \rightarrow model
- Match model to new image data \rightarrow VOI

Example of a Resulting Cerebellum VOI

Validation – Image Data

- 134 PET/CT scans from 49 subjects with H&N cancer
- F-18 FDG (370 MBq+/-10%)
- Uptake time 90 min +/- 10%
- Subjects fasted >4h
- Blood glucose <200 mg/dl
- Arms down
- 128x128 pixel matrix (3.5 x 3.5 x 3.4 mm) or
 168 x 168 pixel matrix (3.4mm x 3.4mm x 2.0mm)

Validation - Uptake in Cerebellum

- Independent reference standard:
 - Experts manually traced the cerebellum in 4 cross-sections (1 axial, 1 coronal, 2 sagittal [left & right hemisphere])
 - 2 experts: 134, 1 expert: 44, and 1 expert: 20
 - Average SUV from all 4 cross-sections
 - Consensus-true SUV model based on expert results + statistical analysis approach

Validation - Uptake in Cerebellum

- Independent reference standard:
 - Experts manually traced the cerebellum in 4 cross-sections (1 axial, 1 coronal, 2 sagittal [left & right hemisphere])
 - 2 experts: 134, 1 expert: 44, and 1 expert: 20
 - Average SUV from all 4 cross-sections
 - Consensus-true SUV model based on expert results + statistical analysis approach

Liver VOI Generation

Validation - Uptake in Liver

- Reference: 2 experts
- Tracing in one axial, sagittal and coronal slice
- Same 134 scans
- Same analysis steps

Site	Auto	Interc	$ept \ \beta_0 \ (SUV)$	Slope β_1 (-)
Liver	Volume	0.02	(-0.23, 0.15)	$0.97 \ (0.94, \ 1.00)$

The University

Examples of Automatically Defined Reference VOI (1)

Comparison Automated vs. Manual

<u>Decrease</u> in total variability if the automated method was used instead of the manual method:

Cerebellum	4-Slice	99.2% *
	Volume	89.8% *
Aortic arch	Volume	76.7% *
Liver	Volume	54.7%

VOI Generation for Lesions

- Segmentation problem → graph-based optimization approach (Optimal Surface Segmentation)
- Graph + cost function (design is critical!)
- Integrated into 3D Slicer (www.slicer.org)

Complexity issues

Complexity issues

Generating Data

- SUV Max, Mean
- Metabolic Tumor Volume
- Range Pixel Values
- Volume over/x SUV
- Normalization against
- Liver/Blood Flow
- Lowest Quartile
- Highest Quartile
 - Etc.....

PET Module Tool

Distancer 5				
sate and Telect Label Maps				
Arr Valves (HU3, 2015 K), 2015 (2015 K), 2015 (2015 K), 2015 (2015 K), 2015		R		
estreta er p	1140	-		A 100
tes hel (0/tes h-selide/hel	-			
d herige stjert () () () () () () () () () () () () ()		3	1	Ĭ

THE UNIVERSITY OF IOWA

Types of Analyses

Decision Support

Validation Study

- Using a set of 60 cases with 230 lesions
 - 3 investigators randomly contoured each case using manual (twice) or PET module tool (twice)
 - 2760 contoured lesions
 - Compared for internal consistency and against best estimate of ground truth

Automated tool agreement

Table 1 Manual Semi-automated Agreement Ν Mean 95% CI Mean 95% CI Within Operator (90.2 - 94.9)690 77.0 (74.7 - 79.4)92.6 **Between Operator** 690 79.8 (78.4 - 81.2)94.1 (92.7 - 95.6)

Table 1. Estimated mean dice coefficients for intra and inter-operator segmentation agreement.

Table 2

Method	Time (minutes)	95% CI (minutes)
Manual	8.88 ± 7.1	(6.47, 11.28)
Semiauto	3.74 ± 3.3	(2.40, 5.08)

NIVERSITY

Table 2. Estimated mean times with standard deviation and 95% confidence intervals (CI) for manual and semi-automated segmentations.

Example of intra- and inter-operator segmentation agreement for manual and semi- automated segmentation methods. (a-d) Manual slice-by-slice segmentation results. (e-h) Semi- automated full 3D segmentation results. (i) Same PET image as in images (a-h), but with a different gray-value transfer function, showing uptake peaks corresponding to individual lymph nodes in close proximity.

THE UNIVERSITY OF LOWA

Tumor Control Probability

(Top) A virtual dose map was generated from each manual contour (Manual-C) or semiautomated segmentation (SAS). (Bottom) Its dose gradient was -2.7 % per mm, adapted from a clinical head-and-neck intensitymodulated radiation therapy (IMRT) plan.

Tumor Control Probability

	Differences (SAS – Manual-C)		
	ΔEUD	∆Logistic TCP	ΔPoisson TCP
Mean	-0.3	-1.2%	-1.1%
Median	-0.3	-1.0%	-1.0%
Intra-Observer Variability Standard Deviations	0	-0.9%	-0.8%
Inter-Observer Variability Standard Deviations	-1.2	-4.7%	-4.7%

The differences between SAS and Manual-C in terms of EUD, Logistic TCP and Poisson TCP when using STAPLE as a ground truth tumor contour. For all cases. SAS resulted in significantly lower (i.e. "-") both intra- and inter-observer variability standard deviations regardless of TCP modeling (p < 0.0043).

Conclusions

- Quantitative imaging represents an opportunity to improve both our ability to consistently identify targets for radiation therapy as well as improve response assessment and prognostication of cancer
- Algorithmic tools are critical components to leverage the big data source and will be combined (multiparametric) with both other imaging and radiogenomics.

Conclusions

- As the complexity increases, the ability of strictly simple principles that have commonly guided therapy decision making is likely to go away
- Final thought on algorithms and target identification in light of TCP and NTCP

