Functional Image-guided Thoracic and Hepatic Radiation Therapy: synergies between nuclear medicine and radiation oncology

Stephen R. Bowen, PhD, DABR
Associate Professor, Radiation Oncology & Radiology (joint)
July 15, 2019

Disclosures

• No conflicts of interest to disclose
• Funding: NIH / NCI R01CA204301

Synergy: Nuc Med Imaging for Precision Rad Onc

• Key premise is that therapeutic ratio (efficacy / toxicity) can be individually optimized
• Nuc med imaging as a biomarker to risk stratify rad onc patients
 – Select therapies, dosing, fractionation
 – Define target / organs-at-risk volumes + dose objectives
• Nuc med imaging as a biomarker to evaluate individual RT response
 – Adapt therapies, dosing, fractionation
 – Adapt target / organs-at-risk volumes + dose objectives
• Nuc med imaging to spatially optimize RT dose distribution
• Applications of nuc med imaging to radiation therapy for thoracic / hepatic cancers
FDG PET/CT for RT Target Definition

- Primary tumor + regional node definition
- CT
- PET/CT
- SD
- Disagreement 1 cm 0.4 cm 45% 1.6%
- Delineation time 16 min 12 min

Steenbakkers RJ et al. IJROBP 64: 435-448, 2006

FDG PET/CT for RT Target Definition

De Ruysscher 2012

Primary tumor + regional node definition

Mid-RT PET Response Outcome Stratification

- Outcome prediction improves with FDG PET mid-RT response measures relative to baseline FDG PET

Mid-RT PET Response Outcome Stratification

- 2 week mid-FDG PET
- 4 week mid-FDG PET
- 4 week mid-FDG PET

- Improved risk stratification on mid-PET within 4 weeks of RT start

Timing of PET Response Assessment during RT

- Metabolic Volume Tumor + Nodes
- Peak SUV Nodes

- Improved risk stratification on mid-PET within 4 weeks of RT start
FDG PET Predicts RT Failure Patterns

- FDG PET as spatial map of local treatment failure risk distribution
 Aerts, Radiother Oncol 2009, 2012

NM Imaging to Optimize RT Spatial Dose Distribution

- Dose painting by contours / Subvolume boosting
 - Biological target volumes (BTV) for uniform dose escalation
 Ling 2000, Tome 2003, Madani 2009
- Dose painting by numbers accounts for intratumoral variations in response to therapy

FDG PET-guided Lung Dose Painting Clinical Trials

- NKI+Maastricht: average dose increase to PET avid areas up to 65+ Gy in 24 fractions
- RTOG 1106: dose escalation based on mid Tx PET (up to 80.4 Gy in 30 fractions)
Nuc Med Lung Functional Imaging

- **Perfusion**
 - 99mTc-MAA SPECT/CT
 - 68Ga-MAA PET/CT

- **Ventilation**
 - 99mTc-DTPA SPECT/CT
 - 99mTc-Technegas SPECT/CT
 - 68Ga-Galligas PET/CT

- **Inflammation**
 - FDG PET/CT

Functional Lung Dosimetry for Toxicity Prediction

- Patients with similar clinical characteristics & anatomic dosimetry (MLD)
 - Upper lobe primary tumors
 - Conventionally fractionated chemoRT
 - Anatomic mean lung dose 16.4 Gy (top) vs. 16.4 Gy (bottom)

- Different functional lung dosimetry (pMLD)
 - Top (pneumonitis): perfused mean lung dose 24.5 Gy
 - Bottom (no pneumonitis): perfused mean lung dose 8.6 Gy

- Combined MLD and pMLD best predict for Grade 2+ pneumonitis in initial (AUC = 0.92) and expanded patient cohorts (AUC = 0.94)

Functional Lung RT Dose-response Modeling

- Perfusion decline spatially correlates with increased inflammation in high dose regions
- Baseline high perfusion regions have steeper (more sensitive) dose-response curves

Owen et al. IJROBP 2018

Thomas et al. (under review)
Nuclear Medicine Basic Science Lectures
Stephen Bowen

Nuc Med Liver Functional Imaging

- PET/CT
 - FDG
 - FDG lactose
- SPECT/CT
 - GSA
 - HIDA
 - Sulfur colloid

<table>
<thead>
<tr>
<th>Uptake Type</th>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Global</td>
<td>Untreated CP-A6</td>
<td>Untreated CP-B7</td>
</tr>
<tr>
<td>Low Global</td>
<td>Untreated CP-B7</td>
<td>Untreated CP-B7</td>
</tr>
<tr>
<td>Regional</td>
<td>Treated CP-A6</td>
<td>Chemoreduction</td>
</tr>
<tr>
<td>Homogeneous</td>
<td>Untreated CP-B7</td>
<td>Untreated CP-B7</td>
</tr>
<tr>
<td>Regional</td>
<td>Untreated CP-B7</td>
<td>Untreated CP-B7</td>
</tr>
<tr>
<td>Regional</td>
<td>Untreated CP-B7</td>
<td>Untreated CP-B7</td>
</tr>
<tr>
<td>Regional</td>
<td>Untreated CP-B7</td>
<td>Untreated CP-B7</td>
</tr>
</tbody>
</table>

Bowen et al. EJNMMI Res 2016

Functional Liver Dosimetry for Outcome Stratification

<table>
<thead>
<tr>
<th>Group</th>
<th>Median OS (days)</th>
<th>1 year OS (%)</th>
<th>Log rank</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP A</td>
<td>90</td>
<td>90%</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>CP B/C</td>
<td>292</td>
<td>39%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CP A FLV V20 < 20%
CP B/C FLV V20 > 20%
CP A FLV V20 > 20%
CP B/C FLV V20 < 20%

Schaub et al. IJROBP 2018

Functional Liver RT Dose-response Modeling

A

B

C

Price et al. IJROBP 2018

++ Toxicity
+ Toxicity
- Toxicity
Functional Liver Avoidance Clinical Trials

Differential Hepatic Avoidance Radiation Therapy (DHART) Planning (U Wash)

- Conventional RT
- Functional Avoidance RT
- Dose Difference

Functional liver image-guided hepatic therapy (FLIGHT) trial (Indiana)

- HIDA SPECT/CT
 - Maximize functional liver volume receiving < 15 Gy
- Inter-patient variability in benefit

Functional Lung Avoidance Clinical Trials

- IMRT plans adapted to avoid perfused lung on 4D MAA PET/CT
- Ongoing functional lung avoidance trials using NM imaging
 - 4D MAA PET/CT (Peter MacCallum)
 - MAA SPECT/CT (U. Washington, U. Michigan)

Functional Lung Avoidance & Response-adaptive Escalation (FLARE) RT

- FDG PET/CT
- MAA SPECT/CT
- FLARE RT Plan

Lee et al. Med Phys 2017
FLARE-RT Phase II Trial
(NCT02773238, R01CA204301, PI: Bowen, Zeng)

- All patients get functional lung avoidance RT: potential quality of life benefit
- Only high local failure risk patients get FDG PET-guided dose escalation: potential survival benefit
- 1° endpoint: 2 yr overall survival vs. RTOG 0617 60 Gy arm
- 2° endpoints: 1 yr local control, grade 2+ pneumonitis incidence vs historical rates

FLARE-RT Mid-Tx PET Response Assessment

- PET Responders: $\text{SSUV}_{\text{peak}}$ decrease 40% (32-48%), MTV decrease 40% (32-62%)
- PET Non-responders: $\text{SSUV}_{\text{peak}}$ decrease 13% (8-23%), MTV decrease 9% (5-21%)

FLARE-RT Plan Adaptation Decisions

- PET Responder: required anatomic adaptation to 60 Gy in 30 fx
- PET Non-responder: required functional adaptation to 74 Gy in 30 fx
FLARE-RT Boost to PET Non-responders

- 13/34 (38%) have received FLARE RT boost
 - 3 weeks RT non-responders & no evidence distant mets
 - 74 Gy to PTV$_{mid}$t [90+ Gy to SUV$_{peak}$]

- Well tolerated
 - 2 Grade 3+ esophagitis
 - 2 Grade 2+ pneumonitis

Future: Multiscale Imaging Response Prediction

- Multiscale imaging response prediction uses information from individual image voxels combined with regional, tumor, and patient factors

- Voxel Forecast Tool: custom generalized least squares (GLS) regression to predict tumor voxel response on mid-RT PET
 - Matérn model variogram to account for spatially correlated voxel data
 - Jack-knife bias-corrected estimator validated on simulations of known voxel response patterns

Voxel Forecast Tool: PET Voxel Response Prediction for Rad Onc Decision Support

- PET Responder NED 491 days
 - 14% under responding tumor voxels
 - MAE = 1.1 SUV

- PET Non-responder Died 323 days
 - 34% under responding tumor voxels
 - MAE = 3.3 SUV
Future: Personalizing NM+RO for HCC management

- Favorable planned dosimetry: personalize 90Y-microsphere prescriptions to achieve isotoxicity in liver
 verify on 90Y-SPECT/PET dosimetry

- Unfavorable planned dosimetry: modify 90Y-microsphere injection site
 boost any remaining cold 90Y-SPECT/PET dosimetry regions with SBRT

Summary: Synergies between Nuc Med and Rad Onc

- Nuc Med imaging to personalize Rad Onc
 - Risk stratify patients
 - Define targets and functional normal tissues
 - Optimize prescriptions and planned radiation dose distributions
 - Assess early response for adaptive therapy

- Future: combined NM image-guided RT with NM therapies
 - RT + targeted radionuclide therapy (TNT) + immunotherapy (IO)
 - NM imaging for targeting / avoidance / dosimetry / verification / response
 - Radiomics / machine learning of NM imaging to personalize NM + RO Tx

Acknowledgments

Financial Support
NIH/NCI R01CA204301

Radiation Oncology
Jing Zeng
Jim Apisarnthanarax
Ramesh Rengan
Mark Phillips
George Fandos
Carl Lee
Michael Jaffe
Charles Branch
Jennifer Mayer
Mark Phillips
Rob Stewart
Elli Frost
Jaya Veerarajan
Dori, Sec. RT staff

Imaging Research Lab
Paul Krumen
Robert Mekkas
Adam Ansari
Larry Pierce
Chin Fu
Rebecca Cintoglio
Nathan Bell

Radiology
Huixi Weng
Matias Benbassat
Walter Yang
Dong Jun
Xia Wu
Mary Warner
Pam Pram
NM Tech staff

SCCA Proton Therapy
Tony Kung
Jay Smith
Darren Law
Alex Egan
Rajesh Regmi
Eric Leong
Zurfer Molina
Dori, Sec. RT staff

Trainees
Kathleen Hong
Toby Cheng
Stephanie Schaub
Ryan Rue
Evan Lein
Mike Chiu
Howard Lee
Sally Patel
Natalia Thomas

SCC Proton Therapy
Tony Kung
Jay Smith
Darren Law
Alex Egan
Rajesh Regmi
Eric Leong
Zurfer Molina
Dori, Sec. RT staff

Trainees
Kathleen Hong
Toby Cheng
Stephanie Schaub
Ryan Rue
Evan Lein
Mike Chiu
Howard Lee
Sally Patel
Natalia Thomas