

Jing Wang, Ph.D. Associate Professor Division of Medical Physics and

Division of Medical Physics and Engineering Department of Radiation Oncology

> UT Southwestern Medical Center

Outcome Prediction

- Treatment modality/strategy selection
- Treatment (de-)intensification
- Increased or reduced dose
- Additional systemic therapy

Radiation Oncology

UT Southwest Medical Ce

Predicting distant failure in lung SBRT patients

Stereotactic Body Radiation Therapy has been established as the standard of care for local control in medically inoperable NSCLC patients:

- High local control rate (>95% in three yeas)
- Relatively high distant failure rate (31% in five years, RTOG 0236)

□ Stratify patients with high risk of distant failure:

- > Additional systemic therapy may reduce the risk and improve overall survival
- > The toxicity of the systemic therapy could itself contribute to increased mortality

UTSouthwest

Radiomics-based Modeling

- Radiomics has shown promising results in constructing imaging-based predictive models:
 - Extraction and analysis of large amount of features from medical images
 - > Building a predictive model from extracted imaging features
- Most Radiomics methods adopt a single objective (overall accuracy or AUC) to construct the predictive model
 - When data is imbalanced, single objective may not be a good measure
 - Same accuracy: (5+80)/(20+80)=(20+65)/(20+80), but sensitivities are very different: 5/20 vs 20/20

Radiation Oncology

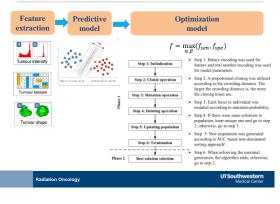
Medical Center

Why not AUC (area under the receiver operating characteristic curve)?

- It summarizes the test performance over regions of the ROC space in which one would rarely operate.
- It does not give information about the spatial distribution of model errors.
- It weights omission (falsely predicted positive fraction) and commission errors (falsely predicted negative fraction) equally.

(Lobo JM, Jiménez-Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models. *Global ecology and Biogeography*. 2008;17(2))

Radiation Oncology


Multi-objective radiomics

Radiation Oncology

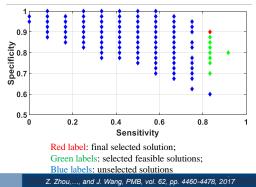
2

Multi-objective radiomics model

Distant failure prediction for early stage NSCLC after SBRT

102 early stage NSCLC patients

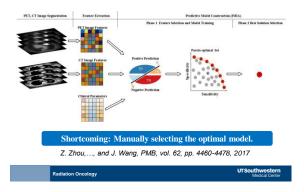
25 experienced distant failure

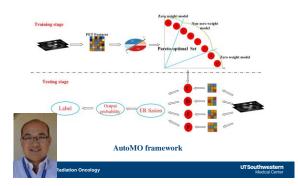

Demographic	Tumor	Treatment	Pretreatment
parameters	characteristics	parameters	medicine
Age	Primary diagnosis	Number fractions	Antiinflammatories
Ethnicity	Central tumor or not	Dose per fraction	Anitdiabetic
Gender	Tumor size	BED	Metformin
	Histology		Statin
	Location		ACE inhibitor
	Stage		ASA

Abbreviation – BED: biological equivalent dose; ACE inhibitor: Angiotensinconverting-enzyme inhibitor; ASA: Acetylsalicylic acid.

Radiation Oncology

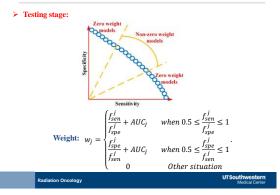
UT Southwest


Solutions with PET/CT/clinic as input features



Modality	Method	Sensitivity	Specificity	AUC
	SO-AUC	0.59±0.14	0.88 <u>+</u> 0.05	0.84 <u>+</u> 0.01
Clinic	TMIA	0.63+0.09	0.82 <u>+</u> 0.04	0.76 <u>+</u> 0.05
	IMIA	0.76+0.03	0.88 <u>+</u> 0.02	0.81+0.04
	SO-AUC	0.65 <u>+</u> 0.15	0.75 <u>+</u> 0.06	0.78 <u>+</u> 0.03
PET	TMIA	0.70 <u>+</u> 0.04	0.72 <u>+</u> 0.03	0.69 <u>+</u> 0.04
	IMIA	0.76 <u>+</u> 0.08	0.75 <u>+</u> 0.08	0.75 <u>+</u> 0.04
	SO-AUC	0.68 <u>+</u> 0.11	0.86 <u>+</u> 0.04	0.82 <u>+</u> 0.02
СТ	TMIA	0.79 <u>+</u> 0.05	0.84 <u>+</u> 0.03	0.80 <u>+</u> 0.03
	IMIA	0.81 <u>+</u> 0.06	0.79 <u>+</u> 0.05	0.78 <u>+</u> 0.03
	SO-AUC	0.54 <u>+</u> 0.06	0.94 <u>+</u> 0.02	0.86 <u>+</u> 0.04
Clinic and PET	TMIA	0.75 <u>+</u> 0.01	0.97 <u>+</u> 0.02	0.84 <u>+</u> 0.03
	IMIA	0.77 <u>+</u> 0.04	0.91 <u>+</u> 0.04	0.82 <u>+</u> 0.06
	SO-AUC	0.54 <u>+</u> 0.14	0.94 <u>+</u> 0.02	0.85 <u>+</u> 0.06
Clinic and CT	TMIA	0.58 <u>+</u> 0.01	0.98 <u>+</u> 0.02	0.68 <u>+</u> 0.03
	IMIA	0.77 <u>+</u> 0.04	0.90 <u>+</u> 0.03	0.83 <u>+</u> 0.05
	SO-AUC	0.47 <u>+</u> 0.14	0.96 <u>+</u> 0.05	0.84 <u>+</u> 0.02
PET and CT	TMIA	0.73 <u>+</u> 0.04	0.86 <u>+</u> 0.08	0.75 <u>+</u> 0.07
	IMIA	0.75 <u>+</u> 0.01	0.81+0.04	0.81 <u>+</u> 0.04
	SO-AUC	0.46 <u>+</u> 0.12	0.97 <u>+</u> 0.03	0.87 <u>+</u> 0.02
Clinic, PET and CT	TMIA	0.62 <u>+</u> 0.06	0.98+0.03	0.84 <u>+</u> 0.04
	IMIA	0.76+0.03	0.94 <u>+</u> 0.03	0.83 <u>+</u> 0.04

Multi-objective radiomics model



Automated multi-objective model (AutoMO)

AutoMO

AutoMO

➤ Testing stage:

Final probability output:

$$P_{i}^{*} = \frac{\mu \times \left[\prod_{j=1}^{J} \left(\omega_{j} P_{i}^{j} + 1 - \omega_{j} \sum_{i=1}^{2} P_{i}^{j} \right) - \prod_{j=1}^{J} \left(1 - \omega_{j} \sum_{i=1}^{M} P_{i}^{j} \right) \right]}{1 - \mu \times \left[\prod_{j=1}^{N} (1 - \omega_{j}) \right]}, i = 1, 2$$

$$\mu = \left| \sum_{i=1}^{2} \prod_{j=1}^{J} \left(\omega_{j} P_{i}^{j} + 1 - \omega_{j} \sum_{i=1}^{2} P_{i}^{j} \right) - (J-1) \prod_{j=1}^{J} \left(1 - \omega_{j} \sum_{i=1}^{2} P_{i}^{j} \right) \right| \quad .$$

Final Label output:

 $L = \max(P_i^*).$

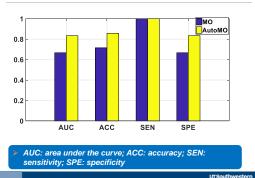
UTSout

Radiation Oncology

Solutions with PET/CT/clinical parameters as input features

1 ٥.٤ <u>ک</u>	3	••••	
Methods	Sensitivity	Specificity	AUC
SO-AUC	0.47±0.10	0.95±0.03	0.84±0.03
TMIA	0.76±0.06	0.89±0.03	0.81±0.04
IMIA-EL	0.83±0.01	0.92±0.02	0.83±0.01
0.2	0.2 0.4	0.6 0.8 nsitivity	↓ 1
	Pareto-optima	al solution set	
Radiation	Dncology		UT Southwestern Medical Center

Distant failure prediction for cervical cancer patients after RT


Totally 70 patients treated for cervix cancer with definitive intent between 2009 and 2012 were used.
Patients within stage IB1 to IVA disease treated with EBRT or combined with high dose rate intracavitary brachytherapy and retrievable pre-treatment PET/CT scanning are used.
All the tumors were contoured manually by the radiation oncologists and all the features including intensity,

oncologists and all the features including intensity, texture and geometry were calculated based on standardized uptake value (SUV).

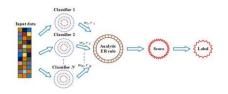
Radiation Oncology

UT Southwest Medical C

Results

Multifaceted predictive model

Multiple Objectives


Radiation Oncology

- Single metric such as accuracy or area under a characteristic curve (AUC) can be misleading, especially for imbalanced data
- We consider both specificity and sensitivity as multi-objective during model training
- Multiple Measurements
- CT, PET, MRI...
- RNAseq, Cytokine, Proteomics...
- Multiple Classifiers
- Support vector machine, convolutional neural network, logistic regression, Naïve Bayesian,...

UTSout

Radiation Oncology

Reliable classifier fusion (RCF)

 Fusing information extracted from individual classifier/modality by combining the output scores with both weight and reliability.

Radiation Oncology	UT Southwestern Medical Center

Weight and Reliability

- The relative importance (weight) of each expert is often considered when making the final decision in most situations.
- The reliability is different from the relative importance, as the former describes the intrinsic property of expert and latter is the expert's extrinsic feature when comparing with other experts.
- When we evaluate the reliability of an expert, a reasonable solution is that we can find several experts who have the similar background with this expert; and the reliability can be evaluated by comparing the decision result with all of other experts.

Radiation Oncology

UT Southwe Medical

UTSout

Reliability

Defined as the similarity between the individual model output probability and other model output probabilities, which satisfies the following conditions:

$$r_l = \begin{cases} 0 & \text{when } l_i \neq l_j; j = 1, \cdots, N, j \neq l \\ 1 & \text{when } l_i = l_j \land p_{l_j} = 1; \ j = 1, \cdots, N, j \neq l \\ 0 < r_l < 1 & \text{in other situations} \end{cases}$$

Dissimilarity of model output probability

$$D_i = \prod_{j=1, j \neq i}^N (1 - p_j), i = 1, \cdots, N,$$

 $r_i(x) = \frac{SL}{N-1} \cdot S_i$

- Similarity $S_i = 1 D_i$
- Reliability

Radiation Oncology

Reliable classifier fusion (RCF) outperforms other fusion strategies on UCI public datasets:

Dataset	Strategy	AUC	Sensitivity	Specificity
	WF	0.85±0.02	0.70±0.02	0.88±0.02
	DSF	0.86±0.01	0.77±0.02	0.87±0.01
Heart	ERF	0.86±0.01	0.76±0.02	0.87±0.01
	RCF	0.88±0.01	0.77±0.02	0.89±0.01
	WF	0.94±0.02	0.78±0.02	0.97±0.01
	DSF	0.92±0.02	0.83±0.02	0.94±0.01
Ionosphere	ERF	0.95±0.01	0.81±0.01	0.96±0.01
	RCF	0.96±0.01	0.82±0.02	0.98±0.01
	WF	0.88±0.02	0.76±0.02	0.84±0.02
Maral.	DSF	0.86±0.01	0.88±0.02	0.68±0.02
Mask	ERF	0.91±0.01	0.87±0.02	0.83±0.02
	RCF	0.93±0.01	0.86±0.02	0.86±0.02
	WF	0.8±0.02	0.71±0.03	0.74±0.03
C	DSF	0.78±0.02	0.78±0.03	0.67±0.03
Sonar	ERF	0.83±0.02	0.83±0.02	0.69±0.03
	RCF	0.85±0.01	0.84±0.02	0.72±0.02
	WF	0.94±0.02	0.86±0.03	0.92±0.01
Constructions	DSF	0.94±0.01	0.86±0.01	0.91±0.00
Spambase	ERF	0.97±0.00	0.93±0.01	0.92±0.01
	RCF	0.98±0.00	0.94±0.01	0.92±0.01
WF: Weighted fusion DSF: Dempster-Shafer fusion ERF: Evidence Reasoning Fusion UTSouthwester MedicalCent				

Predicting distant failure for cervical cancer patients after radiation therapy

Multi-classifier V.S. individual classifier

	AUC	Sensitivity	Specificity
Multi-classifier model	0.83±0.02	0.79±0.00	0.84±0.03
Support Vector Machine	0.73±0.04	0.76±0.08	0.68±0.05
Logistic Regression	0.74±0.03	0.74±0.03	0.75±0.03
K-Nearest Neighbors	0.75±0.04	0.78±0.07	0.75±0.04
Discriminant Analysis	0.74±0.02	0.74±0.03	0.74±0.04
Decision Tree	0.76±0.05	0.72±0.04	0.80±0.04
Naïve Bayesian	0.72±0.03	0.76±0.06	0.73±0.04

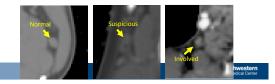
Z. Zhou,..., J. Wang, ICCR, 2019

UTSouthweste Medical Cer

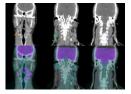
Early Prediction of Locoregional Recurrence for H&N after RT

FDG-PET and CT from 100 patients with definitive radiation therapy.

Predictive performance for six individual classifiers and M-radiomics.


-				
classifier	AUC	ACC	SEN	SPE
SVM	0.7308	0.7200	0.6500	0.7667
LR	0.7292	0.6700	0.6250	0.7000
DA	0.7129	0.7000	0.6000	0.7667
DT	0.7571	0.7300	0.6500	0.7833
KNN	0.7413	0.7100	0.5500	0.8167
NB	0.7173	0.7300	0.6000	0.8167
M-radiomics	0.7848	0.7800	0.6500	0.8667

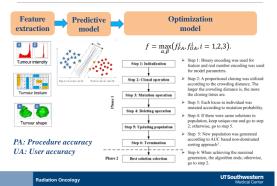
UT Southwes


Cervical Lymph Node Malignancy Prediction

Lymph node metastasis (LNM): well known prognostic actor

- for patients with head and neck cancer (HNC)
- negatively influence overall survival
- increases the potential of distant metastasis
- □ There is often uncertainty about the malignant potential of lymph nodes (LNs) in head and neck cancer.
- Malignant LN identification strongly depends on physicians' experience.

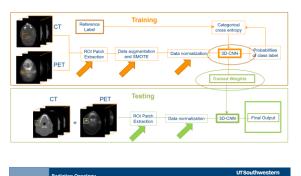
Classify involved, suspicious and normal nodes for patients enrolled in the Involved Field Elective Volume De-Intensification Radiation Therapy for Head and Neck Cancer (INFIELD) trial (PI; Sher)


Training data: 85 involved nodes, 50 suspicious nodes, and 30 normal nodes from 42 patients.

Testing data: 22 involved nodes, 27 suspicious nodes, and 17 normal nodes from 18 patients.

Radiation Oncology

UTSouthwest Medical C

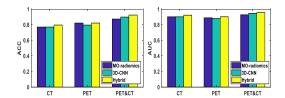

MO-radiomics

Multi-objective radiomics based prediction

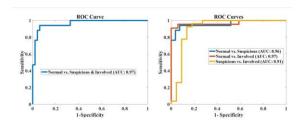
Imaging	Node	Predicted	Predicted	Predicted		
		Normal	Suspicious	Involved	UA	
	Normal	13	4	0	0.76	
СТ	suspicious	0	23	4	0.85	
	involved	1	3	18	0.82	
	PA	0.93	0.77	0.82		
	Normal	14	3	0	0.82	
PET	suspicious	0	23	4	0.85	
PEI	involved	1	5	16	0.73	
	PA	0.93	0.74	0.80		
	Normal	13	4	0	0.76	
PET & CT	suspicious	0	23	4	0.85	
PET & CI	involved	1	3	18	0.82	
	PA	0.93	0.77	0.82		
Feature Set Accuracy A						
				CT	0.82	AU0 0.88

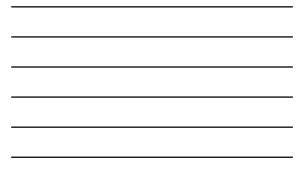
CNN-based predictive model

Radiation Oncology

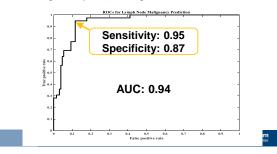

CNN-based prediction results

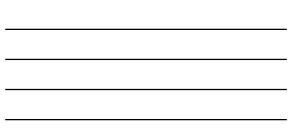
Imaging	: procedure ac	Predicted	Predicted	Predicted		
imaging	Noue	Normal	Suspicious	Involved	UA	
	Normal	15	2	0	0.88	
ст	suspicious	1	20	6	0.74	
CI	involved	1	1	20	0.91	
	PA	0.88	0.87	0.77		
	Normal	16	1	0	0.94	
PET	suspicious	5	18	4	0.67	
PEI	involved	2	2	18	0.82	
	PA	0.70	86	0.82		
	Normal	16	1	0	0.94	
PET & CT	suspicious	2	23	2	0.85	
PELOCI	involved	1	2	19	0.86	
	PA	0.84	0.88	0.90		
Feature Set Accurac						
				СТ	0.83	AI 0.
				PET	0.79	0.
Ra	diation Oncology			PET & CT	0.88	0.


Combination of MO-Radiomics and CNN


L. Chen,..., J. Wang, PMB, vol. 64, 075011 (13pp), 2019

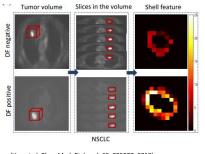
Radiation Oncology	ਯ


Radiation Oncology


UTSout

Results on surgical patients with pathological ground truth

- Training Data: 91 positive/301 benign
- Testing Data: 39 positive/129 benign


- https://clinicaltrials.gov/ct2/show/NCT03953976
- INRT- AIR: A Prospective Phase II Study of Involved Nodal Radiation Therapy Using Artificial Intelligence-Based Radiomics for Head and Neck Squamous Cell Carcinoma (PI: David Sher).

Radiation Oncology

UT Southwest

UTSout

New radiomic feature - Shell feature

(Hao et al. Phys. Med. Biol., vol. 63, 095007, 2018)

Radiation Oncology

Learned Coefficients of Shell Feature

Distant metastasis egative patients

UTSout

UTSout

(Hao et al. Phys. Med. Biol., vol. 63, 095007, 2018)

diation Oncology			

Predictive performance

Ra

• Metrics: AUC, Sensitivity, Specificity, and Accuracy. Accuracy=(TP+TN)/(TP+FN+FP+TN)

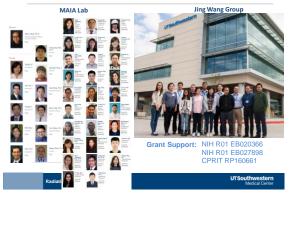
Where TP and TN denote the number of true positives and true negatives; FP and FN indicate the number of false positives and false negatives.

		AUC	Sensitivity	Specificity	Accuracy
SVM	Shell feature	0.80 ± 0.03	0.75 ± 0.04	0.81 ± 0.03	0.79 ± 0.03
20101	Combined feature	0.71 ± 0.04	0.70 ± 0.01	0.71 ± 0.03	0.70 ± 0.02
DL*	Shell feature	0.82 ± 0.02	0.81 ± 0.02	0.83 ± 0.01	0.81 ± 0.02
DL*	Combined feature	0.73 ± 0.02	0.76 ± 0.03	0.74 ± 0.02	0.74 ± 0.03
DL SVM**	Shell feature	0.84 ± 0.01	0.81 ± 0.02	0.85 ± 0.02	0.83 ± 0.02
DL_SVIVI	Combined feature	0.75 ± 0.02	0.75 ± 0.03	0.77 ± 0.03	0.75 ± 0.03

* Gu S, Zhang L, Zuo W, et al. Projective dictionary pair learning for pattern classification, Advances in Neural Information Processing Systems, 793-801, 2014.

** use sparse coefficients learned by DL as the input of SVM

(Hao et al. Phys. Med. Biol., vol. 63, 095007, 2018)


	Radiation	Oncology	
--	-----------	----------	--

Summary

- A unified and flexible multifaceted radiomics model is proposed for various applications in radiation therapy:
- Multi-objective: sensitivity, specificity
- Multi-modality: PET, CT, MRI, clinical characteristics, biology
- Multi-classifier: evidential reasoning with reliable fusing for different classifiers such as SVM, CNN, LR, NB...

UTSout

Acknowledgements

