From Image Guidance to Image Analytics for Precision Spine Surgery

Jeff Siewerdsen, PhD

John C. Malone Professor of Biomedical Engineering Computer Science, Radiology, and Neurosurgery Vice-Chair for BME Clinical and Industry Translation Johns Hopkins University

1. Martin 2019; 2. Khor 2018; 3. Baaj 2017; 4. Adogwa 2017

Tools for Image-Guided Surgery Automatic Planning Statistical atlas / Active shape model (ASM) registration

Deformable Image Registration Multi-modality (CT and MRI)

Target Localization Vertebrae labeling

Surgical Device Localization

Implants (rigid and deformable) and robotics

→ Re-Purposed to Image Analytics at Scale High-level feature extraction Input to predictive models, clinical decision support (CDS)

Automatic Surgical Planning

Surgical Navigation Mainstay for spinal MIS Free-hand screw placement

Robotic Assistance Planning is *required* for robot positioning

Quality Assurance Analyze deviations between planned and delivered

Automatic Surgical Planning

→ Automatic, High-Level **Image Feature Extraction** Definition of a "reference plan" Patient-specific planning Surgeon-specific prefs via atlas **Post-operative QA** Retrospective analysis, correlation with outcomes

 $f_1 < t_1$

(N) f₄ < t₄

 (\mathbb{P})

f₁>t₁

 $f_2 < t_2 || f_2 > t || f_3 < t_3 || f_3 > t_3$

Deformable Image Registration

Reaungamornrat et al., Phys Med Biol 59(14) (2014)

Deformable Image Registration

Deformable Image Registration

Suitability to Deformable Registration in Large Datasets

Widely varying imaging protocols (dose, noise, resolution)

Matching statistics is optimal... but a *diverse* training set yields a robust single network.

f₃<t₃

Target Localization

Automatic Vertebral Labeling in CT

Relatively simple networks for object detection in 2D – YOLO¹ Combine slice-by-slice detections
Alternatively, 3D CNN – requires ~100x more memory
Deeper network to improve accuracy – Inception V2 Network
42 layers deep (combines 7x7, 5x5, and 3x3 convolutions) F-RCNN
→ Ortho-2D (parallel orthogonal slice detections)

(P)

Target Localization

f₃<t₃

Target Localization

→ Automatic Spine Labeling

Suitability to large datasets Determination of levels treated Initialization of planning / registration

→ Automatic GSA

A strong determinant of clinical outcome High-level feature extraction: Preoperative GSA Change (preop-to-postop) GSA

Device Localization

 $\hat{u} = \arg_{u} \max \sum_{\theta} GC \left(P_{\theta}, \int_{\vec{r}} C(u) d\vec{r} \right)$

Uneri et al. Phys Med Biol (2015)

Device Localization

→ High-Level Feature Extraction Automatic determination of breach

 $\Lambda_{screw} \cap \Lambda_{vertebrae}$

Number and type of screws Planned vs delivered position

$$\Delta_{r,\phi} = \vec{d}_{screw} - \vec{d}_{plan}$$

f₁<t

Spine Surgery Outcomes Prediction

W

Spine Surgery Outcomes Prediction

Friedman et al.. Ann. Stat. (2000) H. Ishwaran, Electr. J. Stat. (2007)

f₁<t₁

(N)

Spine Surgery Outcomes Prediction

12 Months (mJOA Function)

New role for image registration / analysis methods developed for high-precision IGS

High-level feature extraction \rightarrow Input to predictive models

A New "Precision" Paradigm for Surgery

Geometric precision

Millimeter targeting via navigation, robotics, etc. Precision medicine

Patient-specific feature guide optimal treatment pathway

Explainable model \rightarrow Actionable CDS

Features that cannot be derived from demographics alone
E.g., N levels to treat, targeted degree of curvature
Identify features that could improve trajectory, outcomes
Guide patient selection, planning, and rehabilitative pathway

Acknowledgments

Biomedical Engineering

- The I-STAR Lab
- The Carnegie Center for Surgical Innovation

Neurosurgery and Orthopaedic Surgery

- N Theodore and WS Anderson
- G Osgood, R Skolasky, B Shafiq, and AJ Khanna

Malone Center for Engineering in Healthcare (MCEH)

- S Vedula, G Hager, and R Taylor **Radiology and Radiation Oncology**
 - C Weiss, N Aygun, and J Carrino J Wong

Research Support

- National Institutes of Health (NIH)
- **MCEH Seed Grant**
- Siemens Healthineers
- Medtronic
- Carestream Health

Disclosures

Siemens – Advisory and Licensing Carestream – Advisory and Licensing Elekta – Licensing

