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1. Martin 2019; 2. Khor 2018; 3. Baaj 2017; 4. Adogwa 2017

3 M
Spinal fusion 
surgery/year

32%
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Tools for Image-Guided Surgery
Automatic Planning

Statistical atlas / Active shape model (ASM) registration

Deformable Image Registration
Multi-modality (CT and MRI)

Target Localization
Vertebrae labeling

Surgical Device Localization
Implants (rigid and deformable) and robotics

→ Re-Purposed to Image Analytics at Scale
High-level feature extraction
Input to predictive models, clinical decision support (CDS)



Automatic Surgical Planning

Surgical Navigation
Mainstay for spinal MIS
Free-hand screw placement

Robotic Assistance
Planning is required for
robot positioning

Quality Assurance
Analyze deviations between
planned and delivered



Automatic Surgical Planning
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ASM Registration

→ Automatic, High-Level
Image Feature Extraction

Definition of a “reference plan”

Patient-specific planning

Surgeon-specific prefs via atlas

Post-operative QA

Retrospective analysis, 
correlation with outcomes



CT-CBCT

Nithiananthan et al., Med Phys 
(2011) (2012)

Deformable Image Registration

Free-Form Deformation

Reaungamornrat et al.,
Phys Med Biol 59(14) (2014)
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MRI-CT

Reaungamornrat et al.
IEEE-TMI (2016) and Med Phys (2017)
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Deformable Image Registration

Input
Images to Register

Output
Displacement

Vector Field

[1] Rohé et al. MICCAI (2017)

U-Net Architecture
SVF-Net1

Supervised Training
TensorFlow, Adam Optimizer



Ketcha et al., SPIE Medical Imaging (2019)

Deformable Image Registration

𝑫𝑻𝒓𝒂𝒊𝒏 = 𝟏𝟓𝟎𝟎𝒎𝑨𝒔

𝑫𝑻𝒓𝒂𝒊𝒏 = 𝑫𝑻𝒆𝒔𝒕

𝑫𝑻𝒓𝒂𝒊𝒏 = 𝟏𝟎𝒎𝑨𝒔

𝑫𝑻𝒓𝒂𝒊𝒏 ∈ [𝟓 → 𝟏𝟓𝟎𝟎] 𝒎𝑨𝒔

Predict No Deformation

𝑫𝑻𝒓𝒂𝒊𝒏, 𝑫𝑻𝒆𝒔𝒕 = 𝑵𝒐𝒊𝒔𝒆𝒍𝒆𝒔𝒔
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→ Suitability to Deformable 
Registration in Large Datasets
Widely varying imaging protocols

(dose, noise, resolution)

Matching statistics is optimal…
but a diverse training set

yields a robust single network. 
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Target Localization
Automatic Vertebral Labeling in CT
Relatively simple networks for object detection in 2D – YOLO1

Combine slice-by-slice detections
Alternatively, 3D CNN – requires ~100x more memory
Deeper network to improve accuracy – Inception V2 Network

42 layers deep (combines 7x7, 5x5, and 3x3 convolutions) F-RCNN
→ Ortho-2D (parallel orthogonal slice detections)

2D Sag 
CNN

112×7×7×32

28×28×28×64
7×7×7×4

112×7×7×6

2D Cor 
CNN 𝑑𝑥 𝑑𝑦 𝑑𝑧

1. Redmon et al, CVPR (2016)

Levine et al., SPIE Medical Imaging (2019)



Target Localization

De Silva et al., Phys Med Biol 61(8) (2016)
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→ Automatic Spine Labeling
Suitability to large datasets
Determination of levels treated
Initialization of planning / registration

→ Automatic GSA
A strong determinant of clinical outcome
High-level feature extraction:

Preoperative GSA
Change (preop-to-postop) GSA

Target Localization



Device Localization
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Uneri et al. Phys Med Biol (2015)



→ High-Level Feature Extraction
Automatic determination of breach

Number and type of screws
Planned vs delivered position

Device Localization

𝛥𝑟,𝜙 = Ԧ𝑑𝑠𝑐𝑟𝑒𝑤- Ԧ𝑑𝑝𝑙𝑎𝑛

Λ𝑠𝑐𝑟𝑒𝑤 ⋂ Λ𝑣𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑒

𝛥𝑟,𝜙



Spine Surgery Outcomes Prediction

Level detection

Spinal curvature

Implant placement

Deviation from ideal 

trajectory  …  

Automated Extraction of High-Level Image Features

Patient
Demographic

Data
(EHR)

+ (Images)

(Demographics)

(Outcomes)*

Predict Outcome / Decision Support

P N N

P N

f1<t1 f1>t1

f2<t2 f2>t2

f4 > t4f4 < t4

f3<t3 f3>t3

PROMIS-29

Patient Selection
Surgical Planning

Rehabilitative  Path

Preop

Atlas

Registration

Reference Trajectories
Spinal Labeling

GSA

Clinical / Demographic Data



Spine Surgery Outcomes Prediction

P N N

P N

f1<t1 f1>t1

f2<t2 f2>t2

f4 > t4f4 < t4

f3<t3 f3>t3

Boosted Decision Tree

H. Ishwaran, Electr. J. Stat. (2007)
Friedman et al.. Ann. Stat. (2000)

𝑓 𝑥 = ෍

𝑡=1

𝑇

𝛼𝑡ℎ𝑡(𝑥)

𝛼𝑡 =
1

2
log

1−𝜖𝑡

𝜖𝑡

Classification Error:

Weights:

Classifier:

Ada-Boost classifier Learning cycles = 30
N classes = 2 Learning rate = 0.1
N samples = 84 K-fold cross validation

∈𝑡= ෍

𝑛=1

𝑁

𝑑𝑛
(𝑡)
𝐼(𝑦𝑛 ≠ ℎ𝑡(𝑥𝑛))

𝑦𝑛 : true outcome variable
𝐼 : indicator function

𝑑𝑛
(𝑡)

: weight of the observation 𝑛 in 𝑡

P N N

P N

BMI<27 BMI>27

LL<60 LL>60

Smoking~ Smoking

L5 C>-20 L5 C<-20

ℎ𝑡 ∶ decision tree with index 𝑡
𝑥𝑛 : input for nth observation



Spine Surgery Outcomes Prediction

12 Months (mJOA Function)

1-Specificity
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AUC= 0.32
(CI95 = 0.19 – 0.46)

SpineCloud-0M
AUC = 0.69
(CI95 = 0.54 – 0.82)

SpineCloud-3M
AUC = 0.82
(CI95 = 0.70 – 0.93)
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Feature Importance



New role for image registration / analysis methods 
developed for high-precision IGS
High-level feature extraction → Input to predictive models

A New “Precision” Paradigm for Surgery
Geometric precision

Millimeter targeting via navigation, robotics, etc.

Precision medicine

Patient-specific feature guide optimal treatment pathway

Explainable model → Actionable CDS
Features that cannot be derived from demographics alone

E.g., N levels to treat, targeted degree of curvature

Identify features that could improve trajectory, outcomes

Guide patient selection, planning, and rehabilitative pathway

S1

L5

L4

L3

L2

L1
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