

PERI	-0	P	ERAT	IVEN	1ORBID	ITY	AN	D LON	NG TERM
				00	MPLICA			S	
				TABLE	V.				
Authora	-		Operature Rep	Ostectoriy Distectoriy Share	ny Palated Complications.	Poor Wound Maders (%)	Faste	Total Complications	
Dziegielewski et al.	2009	220	PM	65	DIW - CMP	7.7	23	10.5	
Nam et al. ¹	2006	103	Med, PM, Lat	Straight, 88, rokch	DWL 2 MCPs. 2 MCPs - DWL BCP MCP- BCP	8.7		18,4	
Usinsic at al. ²⁶	2004	24	Med	Strington	Lag screw.	12.5		12.6	
Del et al. ¹⁹	2003	10	Mad	Notet	2 CMPs	52.6	1.1	57.9	
		23	PM	Noteth	2 CMPs	388.5		20.1	
Genty et al. ¹⁴	2001	107	Med, PM, Lat	Straight, oblique, 55	DIVIC CMP	14.9	. 14	28.9	
Bertrand et al. ²⁴	2000	61	Med	Straight, notch	Plecon plate	4.9	1.0	15.4	
Deen et al. ⁴	2000	00	Med	Straight, 525	CMP	16.6		20	
Smeele at al. ¹¹	1999	- 18	Med, PM	Straight	DNK CMP; recon plate	12.5	. 10,4	22.9	
McCann et al."	1994	31	Med, PM, Lat	Straight	Miniplate.comp plate. report plate, DCDP; OFP	36.5	253	61.3	
Shah et al.14	1993	22	P54	Notoh	DW	27.3	12.4	40/9	
		34	1958	Notofs	CMP	20.6	1.1	29.4	
Christopoulos el sl. ¹⁰	19922	03	NS	SS, nokdn	OWN, CMP	41.0		23.3	
Guillean et al. ¹⁷	1992	- 26	Med. PM, Lat	Med. Phil Lat	ONK DOP	11.5	2.2	25.1	
Dybner & Spiro ¹	1991	313	Med, PM	Straight.notch	DRVK, CMP	20	0	20	
Davidson at al. ¹⁸	1099	-64	5645	Straight	ACL reaso	124	11.4	36.4	

Dirginal Research—Head and Neck Surgery

Positive Margins by Oropharyngeal Subsite in Transoral Robotic Surgery for T1/T2 Squamous Cell Carcinoma

 Head and Nock Surgery 2018, Vol. 158(4) 660–666
 Pitchael J. Prink, MD, 'William G. Albergotti, MD², Tarya J. Rath, HD², Hark W. Kollis, HD², Sara, Abberbock, MS⁴, Hashew Gatzalier, MD², Saragene, Kim, MD², Earch MD, PDP²

COULD INTRAOPERATIVE IMAGING IMPROVE SAFETY AND EFFICACY?

- Center for Surgical Innovation (CSI)
- 2 Operating Rooms
 I Procedure Room
- Intra-operative CT and MRI systems
- Intra-operative navigation Animal and human use

Paydarfar JA, Wu X, Halter RJ. MRI- and CT-Compatible Polymer Laryngoscope: A Step toward Image-Guided Transoral Surgery. Otoloryngol – Head Neck Surg. 2016;610:1-3.

Significant improvement in target localization (21%) 12.8±9.9 versus 10±7.5 mm Significant reduction in task completion time (25%)

22 minutes down to 16 minutes

<u>Conclusions;</u> Although intraoperative imaging improves target localization, clinically surgeons were still off target by 10 mm or more

P. Kahng, X. Wu, N. Ramesh, D. Pastel, R. Halter, J. Paydarfar, "Improving target localization during trans-oral surgery with use of intraoperative imaging," IJCARS, Feb. 2019. IMAGE GUIDED SURGICAL NAVIGATION IN TORS/TLM?

 Successfully used in sinus and skull base surgery, neurosurgery, orthopedic spine

Actively researched in GI, GU, thoracic surgery, others

IMAGE GUIDED SURGICAL NAVIGATION IMPROVES SAFETY SINUS SURGERY

Spannet New Otolanyngology-Head and Neck Surgery 149(1) 17-29 Image-Guided Surgery Influences Perioperative Morbidity from Endoscopic Sinus Surgery: A Systematic Review and Meta-Analysis

Dustin M. Dalgorf, MD¹, Raymond Sacks, MD², Peter-John Wormald, MD², Yuresh Naidoo, MD², Ben Panizza, MD⁴, Brent Uree, MD², Chris Brown, MD⁴, John Cruotta, MD⁷, Kornklat Snidvongs, MD⁸, and Richard J. Harvey, MD¹

- Systematic Review
- IGS vs non-IGS
- Major complications significantly less in IGS group:
 - Entry into any area outside sinuses (eye, brain)
 - Post-op bleeding requiring surgical intervention
 Abort procedure for any reason

USE OF IMAGE GUIDANCE DURING ENDOSCOPIC SINUS SURGERY

Laryngoscope 118: November 2008

Transoral Robotic Surgery Using an Image Guidance System

Shaun C. Desai, BA; Chih-Kwang Sung, MD; Eric M. Genden, MD, FACS

Combined TORS and IGS to resect 3 tumors in the parapharyngeal space

Intraspersive control of resection margine in orbitated hard and neck cancer using a 3D-anrightion system based on PETCT image fusion Marginet Detection (Contanti, March Mar, Marchard, Wang, PERCH, M. D. M. C., Charder, Wang, M. K. M. Charder, J. Wang, P. Markov, M. D. Mar, Charder, Wang, M. K. M. Mark, Harf, "Similar Pharmac Method Realing Margin View MIDB, M. M. Markov, Barl," *Transmission of the Mark Realing Mark*, and the MIDB, M. Markov, Barl, "Dataset Pharmac Markov, Markov, Markov, Ganz, and Sang, Sang, Sang, Sang, "Dataset Markov, Markov, Markov, Ganz, and Sang, Sang, Sang, Sang, Sang, Sang, "Journal of Contantion, Markov, Markov, Sang, Sang,

Fused PET/CT images for IGS resection of recurrences at the base of skull

Application of a Computer-Aided Navigation Technique in Surgery for Recurrent Malignant Infratemporal Fossa Tumors Ret Gene III. No Na Zieler Feng. PAD. MD. Come III. Gene Ret MD

The Journal of Craniofacial Surgery • Volume 26, Number 2, March 2015

Application of computer-assisted navigation systems in oral and maxillofacial surgery Shintaro Sukegawa^{5,1}, Takahiro Kanno^{5,2}, Yoshihiko Furuki⁸ I I patients navigation assisted resection vs 31 non navigation infratemporal fossa tumors

Significantly higher rate of complete resection in navigation group

"...the most obvious disadvantage of the computer-aided navigation is the drifting of soft tasues, which puzzled many surgeons...As for the resection of tumors in the infratemporal focus, the principal threat is the drifting of the internal carotid artery!

Localize joint during TMJ surgery

PROOF OF CONCEPT: SURGICAL NAVIGATION WITH INTRAOPERATIVE IMAGING TO IMPROVE LOCALIZATION ACCURACY

Paydarfar JA,Wu X, Halter RJ.Initial experience with image-guided surgical navigation in transoral surgery. Head & Neck. 2018;1–10

HIGH LEVEL OF REGISTRATION ACCURACY (<= 1 MM)

Construction of a second of the deal hadded on a Comparison Associated Second Technology (Comparison Association Associat

Wen P. Liu¹⁺ Sureenst Resequencerest³ Johnshin M. Sorger³ Joffny B. Siewerdsen^{1,3} Russell H. Taylor³ Jøremy D. Richmon⁴

> TLE improved from I I.2±5.0 mm vs. 5.8±2.5 with IGS

QUANTIFY FORCES GENERATED DURING OPERATIVE LARYNGOSCOPY

F.R.A.N.K.: FUNCTIONAL REFERENCE ANATOMY KNOWLEDGE

Collaboration with University of British

Hybrid model: Combines both FEM and mult body methods

Patient-specific model created by registering template to segmented CT images

J. E. Liph, P. Santess, M. S. Yess, Prospiral: A Para resolution builtechance Moning Tools, Coloning M. Marchard, J. Koss, P. S. Santes, J. S. Markan, Heideberg: Springer Berlin Heideberg. 2012, pp. 355–394.
P. Anderson, S. Fels, N. M. Harand, A. Ho, S. Mosik, C. A. Sanchez, I. Stavress, an K. Tang, "FRAMK, A Hydra 3D Biomechanical Model of the Head and Nock," In

