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Clinical Background

• Different clinicians often use different doses of 
treatment in oncology

• Any single clinician tends to use same dose

– Little individualization 
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Statistical Background

• Large literature on optimal treatment regimes

• Our setting is different

– Two or more competing outcomes

– Treatment variable is dose not drug A vs B

– Not Phase I

• Available datasets from patients treated over 
range of dose

– Use these to build models and optimal treatment 
rule
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Treatment Planning Directive
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• Incorporate patient factors (e.g. 
biomarkers) into RT treatment planning

• This requires new approaches 

– Move from Dose to Expected Outcome

– Move away from hard constraints to 
continuous tradeoffs

– Make efficacy vs toxicity tradeoff explicit 
and quantitative

Individualized Treatment Planning
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Problems with Dose Constraints

Example 1 P(E) P(T)

Dose 1 .5 .20

Dose 2 .9 .21

Example 2

Dose 1 .9 .05

Dose 2 .91 .20

Give max tumor dose with P(T) < 20%?
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Better Models = Better Outcomes?

5 6

7 8



3Department of Radiation Oncology • University of Michigan Health Systems

Slide 9

Better Models = Better Outcomes?

FDA-NIH Biomarker 
Working Group.

Predictive Biomarker:
used to identify 

individuals who are 
more likely than similar 
individuals without the 

biomarker to experience 
a favorable or 

unfavorable effect from 
exposure to a medical 

product or an 
environmental agent.
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Combining Efficacy and Toxicity

• Treatment planning must be based on toxicity and 
efficacy considerations

• Metrics that combine efficacy and toxicity

– Uncomplicated control (Neither toxicity nor progression within 
some time interval (Ågren A et al, Red J, 1990)

– QTWiST= Quality-Adjusted Time WIthout Symptoms or Toxicity 
(Jang et al, JCO, 2009, and Black et al, NEJM 2015)

– Overall Survival

• Biomarkers are often associated with single toxicity OR 
efficacy outcome, not composite endpoint

– Model outcomes separately and then combine predictions when 
evaluating a particular dose/plan
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Use this approach to tradeoff of E vs T or T1 vs T2

Select optimal dose (D) to maximize the Utility 

1) U = 𝑃 𝑬  𝑫, 𝑮) − 𝜃 ∗ 𝑃(T | D, G)

2) U = 𝑃 𝑬  𝑫, 𝑮)  − ∑ 𝜃 ∗ 𝑃 𝑇  𝑫, 𝑮

3) U = 𝑃 𝑇𝟏  𝑫, 𝑮 + 𝜃𝟐 ∗ 𝑃 𝑇𝟐  𝑫, 𝑮

where G denotes covariates (age, gender, imaging 
metrics, biomarkers, …)

Utility Approach to Optimal Dose Selection

Schipper M et al, Stat Med 2014.
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Utilities: Alternate Approach

EfficacyToxicity

Source: Peter Thall, UM Talk, 2014
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Choice of θ

• Elicit from clinician based on undesirability of 
toxicity relative to local tumor progression

– ‘How bad is the toxicity relative to lack of efficacy’

– e.g ‘If increasing tumor dose would  increase LC 
from 80 to 90% how much increase in probability 
of  G3 Pneumonitis would you take?’

Or 

• As tuning parameter to control average rate 
of toxicity

– As θ increases, dose and toxicity decreases

Slide 15

Liver Example

https://emily-morris.shinyapps.io/ExpandedApp/
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Other Applications

• Head & Neck Cancer:  

– Decision: De-escalate dose to primary 
tumor or individual nodes?

– Efficacy = Local-regional control

– Toxicity = Xerostomia, Dysphagia…

– What is relative undesirability of G3 
Dysphagia relative to local progression?

13 14

15 16



5Department of Radiation Oncology • University of Michigan Health Systems

Slide 17

Other Applications

• Lung Cancer

– Decision: Put more dose through normal lung 
or heart?

– Give everyone same tumor dose

– What is relative undesirability of G3 Cardiac 
Toxicity relative to G3 Pneumonitis?
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Other Applications

• 177Lu DOTATATE  for Neuroendocrine 
tumors

• Decision: How many cycles to give?

– What is relative undesirability of Kidney 
Toxicity relative to Tumor Progression?
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Constraining Dose Effects

• Often reasonable to assume monotone effect of 
D on E and T

• Constrain slope of dose-efficacy and dose-
toxicity curves to be non-negative for all patients

logit P(T|…) = 𝛽 + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝐷 + 𝛽ଷ𝑋ଵD

ௗ

ௗ
𝑃 𝑇 ≥ 0 ⇒  𝛽ଶ + 𝛽ଷ𝑋ଵ ≥ 0
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Constrained LASSO

In many settings, large number of potential 
biomarkers available

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 − 𝒍𝒐𝒈𝑳 𝜷, 𝑿, 𝒀 + 𝝀 𝜷 𝟏

subject to 𝐶𝛽 ≥ 0

where C is a n x (2p+1) matrix
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Virtual Clinical Trials

• Simulate datasets of size N including X, D, E|X,D 
and T|X,D

• For each simulated dataset

– Calculate optimal dose 𝑑(𝑋, 𝜃) for each
patient

• Using models from Forward Selection, LASSO, 
Constrained Lasso, fixed dose, theoretical

– Grid search to choose 𝜃መ so that 𝑃 𝑇 𝑋, θ = .2

– Calculate  𝑃 𝐸 𝑋 = ଵ
⁄ ∑ 𝑃 𝐸 𝑋, 𝑑
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Simulation Results

Li P et al, Biometrical J. 2019
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Intuition

• How can Utility based dose selection 
increase efficacy without increasing 
toxicity?

– Intuition: by ‘spending’ its toxicity wisely, 
i.e. in those patients who derive largest 
efficacy gain

• Ethical approach: Patients exposed to 
risk (P(T)) in proportion to reward (P(E))
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Conclusions

• Better models/markers can be coupled with the 
proposed utility approach to improve efficacy 
without increasing toxicity

• When fitting models where goal is personalized
medicine

– Looking for interactions with dose

– Standard metrics (such as AUC) less relevant
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Next Steps

• Optimize full plan to directly maximize 
expected utility

– Work by Dan Polan, Martha Matuszak

Slide 27

Example Schematic

Plan for Patient i, defined by beamlet intensities  {bij; j=1, 2,…J}

Tumor Dose 
(Di)

Mean Lung 
Dose (mldi)

Max Esophageal 
Dose (medi)

Heart Dose V5  
(hdi)

P(LCi)|Di, Mi)

E(U𝑖)  = P(LC𝑖) − 𝜃ଵ ∗ 𝑃(𝐿𝑇= 1) − 𝜃ଶ ∗ 𝑃(𝐸𝑇= 1) − 𝜃ଷ ∗ 𝑃(𝐻𝑇= 1)

P(LTi|mldi, Mi) P(ETi|medi, Mi) P(HTi|hdi, Mi)

Treatment Planning Goal:  
Select bij; j=1, … J to maximize E(Ui) subject to dosimetric constraints

Let Mi denote 
Clinical Factors 
and Biomarkers
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Next Steps

• Constraining risk at individual level
𝑃(𝑬 = 𝟏|𝑫) − 𝒇(𝜃, 𝑃(T=1| D))

• Compare CLASSO to machine learning methods 
(e.g. monotone BART)

• Joint modeling of E,T to calculate E(U)

• Involve patient when selecting θ
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Liver Dataset

Variable Statistic Summary 

Gender
Male

Female

N (%)
113 (80%)

28 (20%)

Age Mean (sd) 65 (11)

ALBI at baseline Mean (sd) -2.18 (0.57)

Change in ALBI at mid-
treatment

Mean (sd) [ 0.20 (0.31)

MLD Mean (sd) 13.1 (7.2)

Tumor Dose Mean (sd) 72 (21)
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Overall Survival by CP
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OS Model

Variable
Hazard 

Ratio 
Estimate 

Lower 95% 
CL

Upper 95% 
CL

P-Value

ALBI baseline 1.35 0.95 1.92 0.1

ALBI change 2.77 1.34 5.72 < 0.01

Tumor Dose (Gy) 0.98 0.96 1.00 < 0.01

MLD (Gy) 1.04 1.02 1.06 0.02
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Modeling Choices

• This model selects min or max dose as 
optimal for all patients

– OS monotone function of dose

– Not plausible

• Alternative modeling strategies

– Cox model with quadratic dose

– Nonparametric machine learning models
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Parametric and Nonparametric Models

• Cox Model:
– OS ~ ALBI baseline + ALBI change + MLD + MLD2 + D + 

D2 + MLD*ALBI baseline + MLD*ALBI change + MLD2

*ALBI baseline + MLD2 *ALBI change 

• Bayesian Additive Regression Trees

– Flexible approach with strong predictive 
performance

Sparapani RA, Logan BR, McCulloch RE, Laud PW. Nonparametric survival 
analysis using Bayesian Additive Regression Trees (BART). Stat Med. 
2016;35(16):2741–2753. 
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Virtual Clinical Trial

• Split the data into testing and training datasets

• Using the training set

– Fit model for OS(X,D)

– Use this model to define ODR

• Using the validation set

– Fit model for OS(X,D) 

– Use this model to calculate OS(𝐷
௧

, 𝑋) for 
patients in training set

• Repeated 10 times and average OS(𝐷
௧

, 𝑋)

Slide 36

Individual OS vs D Curves
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Individual OS vs D Curves
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Shrinkage Estimator of Optimal Dose
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Shrinkage Estimator of Optimal Dose

Di Dopt

O
S

| X
, D

Patient A Patient B

𝑫𝒊
∗ = 𝒘𝒊 ∗ 𝑫𝒊 + 𝟏 − 𝒘𝒊 ∗ 𝑫𝒑𝒐𝒑

𝒘𝒊 =
𝑬(𝑶𝑺|𝑫𝒊)ି𝑬(𝑶𝑺|𝑫𝒑𝒐𝒑)

𝑺𝑬 𝑬(𝑶𝑺|𝑫𝒊)ି𝑬(𝑶𝑺|𝑫𝒑𝒐𝒑)
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Virtual Trial: Results

Dose Selection Method OS(2 Years)

Fixed: 8Gy X 5 (EQD2=60) 0.36

Fixed: 10Gy X 5 (EQD2 = 83) 0.43

Nonlinear Cox PH model 0.45

Nonlinear Cox PH model: 
shrinkage estimator 0.48

BART 0.46

Observed 0.44

37 38

39 40



11Department of Radiation Oncology • University of Michigan Health Systems

Slide 41

Outline

• Background

• Two Competing Outcomes: Utility Approach

• Directly Maximizing Expected Survival

• Dynamic Treatment Regimes

• Conclusions

Slide 42

Dynamic Treatment Regimes

• A dynamic treatment regime (DTR) is a sequence of 
decision rules, one per stage, that map time-varying 
state of an individual to recommended treatments:

– Aim to optimize some cumulative clinical outcome.

• Key: Heterogeneity in responses 

– Across patients: what works for one may not work for 
another.

– Within a patient: what works now may not work later.

Zhao YQ, Laber EB. Estimation of optimal dynamic treatment 
regimes. Clin Trials. 2014 
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How can we estimate a DTR?

• Best:  Run a SMART trial

• Or, analyze existing data 

Chapter 4: SMART design, conduct, and analysis 
in oncology
Peter Thall

Wang L, Rotnitzky A, Lin X, Millikan RE &  Thall
PF.  Evaluation of Viable Dynamic Treatment 
Regimes in a Sequentially Randomized Trial of 
Advanced Prostate Cancer, JASA, 2012
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SMART Trials

• Current SMART 
literature:  Categorical 
Treatment and Binary 
outcomes

Sample Sequential Multiple Assignment Randomized Trials with 
Continuous Outcomes. JSM, 2019. Hartman H, Schipper M, Kidwell K
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Estimating DTR from Observational Data

Result of time-varying confounding: collider-stratification bias
(Berksons fallacy) 

Traditional regression methods fail
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Adaptive RT: Dynamic Treatment Regimes 

• Large statistical literature on DTRs

• Mostly focused on binary outcomes (not 
survival)

• Mostly focused on categorical treatment 
options (not dose of RT)

m1
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Options for Clinical Trial

• Conduct a ‘standard’ SMART trial with 
no covariate based randomization

• Conduct a randomized Ph II trial 
comparing outcomes between

– Previously estimated DTR vs Standard 

• Hybrid
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Hybrid SMART

CP>7

18

24

30

ALBI 
Increase ≤ .2CP≤7

24

30

36

ALBI 
Increase > .2

12

16

20

16

20

24

Stage I 
Randomization

Stage II 
Randomization

45 46

47 48



Slide 46

m1 mjschipp, 7/11/2019



13Department of Radiation Oncology • University of Michigan Health Systems

Slide 49

Acknowledgements

• Krithika Suresh, Emily Morris, Pin Li, 
Yilun Sun

• Shuti Jolly, Dawn Owen, Michelle 
Mierzwa and Ted Lawrence

• Martha Matuzak, Dan Polan, Randy 
TenHaken

• Lu Wang, Jeremy Taylor, Phil Boonstra

Slide 50

Questions?

49 50


