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Clinical Background

« Different clinicians often use different doses of
treatment in oncology

* Any single clinician tends to use same dose

— Little individualization
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Statistical Background

» Large literature on optimal treatment regimes
» Our setting is different

— Two or more competing outcomes

— Treatment variable is dose not drug A vs B

— Not Phase |

» Available datasets from patients treated over
range of dose

— Use these to build models and optimal treatment
rule
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M Treatment Planning Directive
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~ Individualized Treatment Planning

* Incorporate patient factors (e.g.
biomarkers) into RT treatment planning

» This requires new approaches

— Move from Dose to Expected Outcome

@ — Move away from hard constraints to
continuous tradeoffs

Note: Limits based on RTOG 1106 ar more conservative
*For IMRT/VMAT Plans

Target Coverage & Conformality Goals:
Name Priority Parameter Goal Notes/Comments
PTV(s) 2or Dose covering 95% PTV | fxDose.

— Make efficacy vs toxicity tradeoff explicit
Pl || Muooeioic | iormebes and quantitative

Conformity Index | 2 or Rx Isodose Vol/PTV <15 {if not met, consider IMRT)

Dose Prescription:
Choose
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Problems with Dose Constraints M _ Better Models = Better Outcomes?

Figure 1. A prognostic biomarker that cannot be used to
improve overall outcomes.
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M Better Models = Better Outcomes?

Figure 2, A predictive biomarker that can be used to improve
overall outcomes due to the differing slopes of dose-toxicity
curves by biomarker values.
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Predictive Biomarker:
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individuals who are
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Combining Efficacy and Toxicity

Treatment planning must be based on toxicity and
efficacy considerations
Metrics that combine efficacy and toxicity

— Uncomplicated control (Neither toxicity nor progression within
some time interval (Agren A et al, Red J, 1990)

— QTWIiST= Quality-Adjusted Time Without Symptoms or Toxicity
(Jang et al, JCO, 2009, and Black et al, NEJM 2015)

— Overall Survival

Biomarkers are often associated with single toxicity OR
efficacy outcome, not composite endpoint

— Model outcomes separately and then combine predictions when
evaluating a particular dose/plan
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M Utility Approach to Optimal Dose Selection

M

Use this approach to tradeoff of Evs T or T1 vs T2

Select optimal dose (D) to maximize the Utility
1)U=P(E|D,G)-6+P(T|D,G)
2)U=P(E|D,G) —%;0; * P(T;| D,G)
3)U=P(Ty| D,G) + 6, * P(T,| D, G)

where G denotes covariates (age, gender, imaging
metrics, biomarkers, ...)

Schipper M et al, Stat Med 2014.
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M _ Utilities: Alternate Approach Choice of

« Elicit from clinician based on undesirability of
toxicity relative to local tumor progression

— ‘How bad is the toxicity relative to lack of efficacy’

— e.g ‘If increasing tumor dose would increase LC
from 80 to 90% how much increase in probability
of G3 Pneumonitis would you take?’

Mild 4 Or
Moderate .
High 2 Efficacy * As tuning parameter to control average rate

Toxicity of toxicity

Severe

— As 6O increases, dose and toxicity decreases
Radistion0ncelogy Source: Peter Thall, UM Talk, 2014
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M Liver Example ™M Other Applications

tility of Additional Doses - ICG Model
T ke i SN * Head & Neck Cancer:

Initial physical dose per fraction:

— Decision: De-escalate dose to primary
tumor or individual nodes?

Probability of To

— Efficacy = Local-regional control

MLD initial:

, — Toxicity = Xerostomia, Dysphagia...

Mean Liver Dose (LOL, Gy)

Uty - o sty oty g —What is relative undesirability of G3
: Dysphagia relative to local progression?

https://emily-morris.shinyapps.io/ExpandedApp/
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Other Applications

* Lung Cancer

— Decision: Put more dose through normal lung
or heart?

— Give everyone same tumor dose

— What is relative undesirability of G3 Cardiac
Toxicity relative to G3 Pneumonitis?
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M Constraining Dose Effects

» Often reasonable to assume monotone effect of
DonEand T

» Constrain slope of dose-efficacy and dose-
toxicity curves to be non-negative for all patients

logit P(T|...) = Bo + B1X1 + B2D + B3X1D

P(T) 2 0= B, + 3% 20
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M  Other Applications

« 77Lu DOTATATE for Neuroendocrine
tumors

 Decision: How many cycles to give?

—What is relative undesirability of Kidney
Toxicity relative to Tumor Progression?
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M Constrained LASSO

In many settings, large number of potential
biomarkers available

minimize — logL(B,X,Y) + A||Bl1

subjectto Cf = 0

where C is a n x (2p+1) matrix

Radiation Oncology Slide 20
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M Simulation Results

Mean E with T constraint at 0.20

Virtual Clinical Trials

» Simulate datasets of size N including X, D, E|X,D
and T|X,D

» For each simulated dataset

— Calculate optimal dose d;(X, 6) for each
patient

 Using models from Forward Selection, LASSO,
Constrained Lasso, fixed dose, theoretical

— Grid search to choose 8 so that P(T|X,0) = .2
— Calculate P(ElX) = 1/”'21' P(Elxl' dl) theory FS lasso classo fixed-dose

040 045 050 055 0.60 065

Radiation Oncology Li P et al, Biometrical J. 2019
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Intuition
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» How can Utility based dose selection
increase efficacy without increasing

X=0 X=1 toxicity?
— Intuition: by ‘spending’ its toxicity wisely,
i.e. in those patients who derive largest

efficacy gain

Efficacy
, Toxicity

Efficacy

« Ethical approach: Patients exposed to
risk (P(T)) in proportion to reward (P(E))

Probability
Probability

Toxicity
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22 Conclusions

Univ

» Better models/markers can be coupled with the
proposed utility approach to improve efficacy
without increasing toxicity

* When fitting models where goal is personalized
medicine

— Looking for interactions with dose

— Standard metrics (such as AUC) less relevant
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M Example Schematic

Uni

Plan for Patient i, defined by beamlet intensities {bu; j=1,2,..J}

¥ g >
Tumor Dose  Meanlung  Max Esophageal  Heart Dose V5
(D) Dose (mld)  Dose (med) (hd)
i

l l l Let M; denote
PLC)ID, M) P(LT|mld, M) P(ET,|med, M) P(HT,|hd, M) | Clinical Factors
— N _— and Biomarkers
//
— N\

~——_\ // _—
~\w

| E(U) =P(LC) =6, P(LTi=1) =0, + P(ET;=1) — 63 * P(HT,= 1) |

Treatment Planning Goal:
Select by; j=1, ... J to maximize E(U;) subject to dosimetric constraints
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!@M Next Steps

» Optimize full plan to directly maximize
expected utility

—Work by Dan Polan, Martha Matuszak

Radiation Oncology Slide 26

!@M Next Steps

Constraining risk at individual level
P(E = 1|D) — f(6,P(T=1| D))

Compare CLASSO to machine learning methods
(e.g. monotone BART)

Joint modeling of E,T to calculate E(U)

Involve patient when selecting 6
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Outline Liver Dataset

Background Variable Summary

Two Competing Outcomes: Utility Approach Gender

Male
Female

Directly Maximizing Expected Survival
Dynamic Treatment Regimes
Conclusions Mean (sd)

Mean (sd) [ 0.20(0.31)

Mean (sd) 13
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M ~ Overall Survival by CP

Survival by CTP score

1001 — Strata Hazard
CP_score=A i Ratio
CP_score=8 Estimate

~+ CP_score=C

Lower 95% Upper 95%
CL CL

o
=5
3
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o
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Survival probability
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- Modeling Choices Parametric and Nonparametric Models

ol

» This model selects min or max dose as « Cox Model:
Optlmal for all patlents — OS ~ ALBI baseline + ALBI change + MLD + MLD2 + D +

0S f : fd D? + MLD*ALBI baseline + MLD*ALBI change + MLD?
- monotone function of dose *ALBI baseline + MLD2 *ALBI change

— Not plausible « Bayesian Additive Regression Trees

+ Alternative modeling strategies — Flexible approach with strong predictive

. . performance
— Cox model with quadratic dose

— Nonparametric machine learning models
Sparapani RA, Logan BR, McCulloch RE, Laud PW. Nonparametric survival

analysis using Bayesian Additive Regression Trees (BART). Stat Med.
2016;35(16):2741-2753.
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M  virtual Clinical Trial M Individual OS vs D Curves

ical S

» Split the data into testing and training datasets ‘Swv'va' Curves from Cox PH mode
» Using the training set

— Fit model for OS(X,D)

— Use this model to define ODR
» Using the validation set

— Fit model for OS(X,D)

Predicted P(S > 2 year)

— Use this model to calculate OS(D;P*, X;) for
patients in training set

+ Repeated 10 times and average OS(D;"", X;)

Tumor Dose

Radiation Oncology Slide 35 Radiation Oncology Slide 36

36

Department of Radiation Oncology * University of Michigan Health Systems



M Individual OS vs D Curves

Survival Curves from BART model

Predicted P(S > 2 year)
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Shrinkage Estimator of Optimal Dose

Patient A Patient B

Di I:: D: Dopt Di|:> D: D

D;=Wi*Di+(1_Wi)*Dpop

__ _E(0S|D)—E(0S|Dpop)
Radiation Oncology t SE[E(OS|Di)_E(OS|Dpap)] Slide 39

Shrinkage Estimator of Optimal Dose

Patient A Patient B
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m!‘! Virtual Trial: Results

Dose Selection Method
Fixed: 8Gy X 5 (EQD2=60)

Fixed: 10Gy X 5 (EQD2 = 83)

Nonlinear Cox PH model

Nonlinear Cox PH model:
shrinkage estimator
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M How can we estimate a DTR?

* Best: Run a SMART trial

* Or, analyze existing data

croEhe et Chapter 4: SMART design, conduct, and analysis
rategies in Practice .
in oncology
Peter Thall

Wang L, Rotnitzky A, Lin X, Millikan RE & Thall
PF. Evaluation of Viable Dynamic Treatment
Regimes in a Sequentially Randomized Trial of
Advanced Prostate Cancer, JASA, 2012
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Dynamic Treatment Regimes

* A dynamic treatment regime (DTR) is a sequence of
decision rules, one per stage, that map time-varying
state of an individual to recommended treatments:

— Aim to optimize some cumulative clinical outcome.
» Key: Heterogeneity in responses

— Across patients: what works for one may not work for
another.

— Within a patient: what works now may not work later.

Zhao YQ, Laber EB. Estimation of optimal dynamic treatment
regimes. Clin Trials. 2014
Radiation Oncology Slide 42

M SMART Trials

[ A ] 0< KR
Current SMART
‘ o= 1 literature: Categorical
(e @y v g * | Treatment and Binary
\ BN © 1 outcomes

i

Sample Sequential Multiple Assignment Randomized Trials with
Continuous Outcomes. JSM, 2019. Hartman H, Schipper M, Kidwell K
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M Estimating DTR from Observational Data Adaptive RT: Dynamic Treatment Regimes

* Common

S * Large statistical literature on DTRs

* Mostly focused on binary outcomes (not
survival)

Baseline

» Mostly focused on categorical treatment
options (not dose of RT)

Result of time-varying confounding: collider-stratification bias
(Berksons fallacy)
Traditional regression methods fail
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M Options for Clinical Trial m!! Hybrid SMART

R :tag_ell Stage Il
+ Conduct a ‘standard’ SMART trial with andomization __ Randomization

18 )

* Conduct a randomized Ph Il trial

no covariate based randomization — ;
comparing outcomes between

(cp>7)&(24) ALBI
NS Increase > .2

— Previously estimated DTR vs Standard
* Hybrid
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™M  Questions?
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