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Radiotherapy demands optimized plans

Patient-specific treatment plan
Dose to target and organs-at-
risk quantified

Very carefully planned, but is 
this what we deliver?

Eclipse (Varian)
3

Imaging is the key to better radiotherapy

Cone-beam CT is used for patient setup, 
primarily based on bony anatomy
Truly optimized treatments should use:

Soft-tissue based patient positioning
Adaptive radiotherapy
Dose accumulation

Need high-quality CBCT images!

Varian
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Cone-beam CTDiagnostic CT
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CBCT reconstruction basics

Pre-processing steps
• Scatter correction, normalization, 

beam hardening (spectral) 
correction 

Analytic reconstruction
• Filtered back-projection
• Exact solution for noiseless, central 

axial slice
• Noise creates streaks, incomplete 

data causes cone-beam artifacts

Source/detector rotate around patient

exxim-cc.com

Forward Projection
Back Projection
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Pre-
Processing

Projections Back Projection

Reconstruction as an optimization problem
Goal: Enforce data consistency, with image regularization

argmin
ఓ

 𝑦 − 𝐴𝜇 ௐ
ଶ  + 𝑅(𝜇)

Corrected projections (scatter, beam hardening) 𝑦
Reconstructed image 𝜇; Forward projector 𝐴
Statistical weighting 𝑊: Downweights low-fidelity, noisy rays
Image regularization 𝑅(⋅): Edge-preserving noise reduction

Wikipedia: Total Variation

Projection Data Reconstructed Image
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Head – Noise and Artifact Reduction
Conventional (FBP) Iterative

s=29.1 HU s=16.6 HU

Wang et al, AAPM 2016 [Best in Physics: Imaging]

Head – Conventional Reconstruction
Cone-Beam Artifact Metal Artifact
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Head – Iterative Reconstruction
Cone-Beam Artifact Metal Artifact

The optimization problem
Model-based image reconstruction
Basic Poisson statistical model of quantum noise

𝑦~Poisson{𝐼,eି 𝐀ఓ }

Negative log-likelihood of all measurements (assuming independence)
−𝐿 𝜇; 𝑦 =  𝐼,eି 𝐀ఓ  + 𝑦 𝐀𝜇 



• Can get more sophisticated by adding energy dependence, scatter, 
electronic noise, source/detector blur, etc.

Combining likelihood and regularization = penalized likelihood (PL):

Objective Log-likelihood Regularization

�̂� = argmin
ఓ

{Φ 𝜇; 𝑦 ≜ −𝐿 𝜇; 𝑦 + 𝛽𝑅 𝜇 }
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Image regularization

Roughness penalty on difference between neighboring 
voxels

𝑅 𝜇 =   𝑤Ψ 𝜇 − 𝜇

∈ே

Quadratic penalty enforces smoothness throughout 
image

𝑅 𝜇 =   𝑤 𝜇 − 𝜇
ଶ

∈ே

Huber penalty preserves edges with less penalty for 
larger differences

Ψு 𝑥 = ቐ
    ଵ

ଶఋ
 𝑥ଶ, 𝑥 ≤ 𝛿

𝑥 − ఋ
ଶ

, 𝑥 > 𝛿

Penalty

LinearQuadratic

-δ δ

Quadratic

Linear

Huber

3D Neighborhood
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Noise-Resolution Tradeoff

u

v

fu

fc-fc

Apodization

fv
Smoothing

Roughness penalty on difference between neighboring 
voxels

𝑅 𝜇 =   𝑤Ψ 𝜇 − 𝜇

∈ே

Filtered Backprojection
Apodization window with cutoff frequency fc
Fair comparison should also smooth in z-direction

3D Neighborhood

12
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Low Contrast 
Target (-30 HU)

Diagnostic CT

Noise-Resolution Tradeoff
Low contrast sphere in head phantom

13
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Noise-Resolution Tradeoff
Low contrast sphere in head phantom
Increasing smoothness (L to R)
PL-Q and FBP offer similar tradeoffs
Smaller δ provides greater edge-preservation
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Solving the optimization problem

Conventional SQS

Initialize 𝜇 = 𝜇 

For 𝑛 = 1,2,3, … , 𝑁 iterations
1) 𝑙 = 𝑨𝜇 forward project
2) �̇� = 𝑨𝑻(𝑦 − 𝐼𝑒ି) likelihood gradient
3) 𝑑 = 𝑨𝑻(𝛾 ⋅ 𝑐(𝑙)) likelihood curvature
4) 𝛻𝑅 = ∑ �̇� 𝜇 − 𝜇∈𝒩ೕ

reg. gradient

𝐶 = ∑ 2𝜔ట∈𝒩ೕ
𝜇 − 𝜇 reg. curvature

5) Δ = −
̇ାఉఇୖ

ௗାఉ
compute update

𝜇 ≔ 𝜇 + Δ ା update image

�̇� 𝛻𝑅𝑑 𝐶

μ*

Popular method: Separable Quadratic Surrogates (SQS)1 fits quadratic to objective function 
Separable = update voxels simultaneously
Quadratic = minimization at each step
Surrogates = guarantees convergence

μ*‒μ(0)μ(0) Δ

1Erdogan and Fessler, Phys Med Biol 44(11) 1999. 15

Reconstruction time
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Iterative Reconstruction Tends to be Slow
• Default PL reconstruction: ~200 iterations, ~2 hrs
• FBP reconstruction: few sec

Incomplete Data Slows Convergence Further
a) Cone-beam artifacts (e.g., away from central slice)
b) Longitudinal truncation (e.g., 20 cm coverage)
c) Undersampling / incomplete orbit (e.g., ~180° orbit)
d) Lateral truncation (e.g., 26 cm FOV)

Acceleration Methods
• Ordered subsets
• Fast, GPU-based projectors
• Momentum-based methods to accelerate reconstruction 

time by an order of magnitude1,2

1 Nesterov, Math. Program. Ser. A 103, 2005
2 Kim, Ramani, and Fessler, IEEE TMI 2015 16
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Ordered subsets

Each subset produces a near-equivalent update as the full set

…but with substantially reduced projection time (1/M)

Ordering helps maximize the separation between subsets

…compared to sequential or random subset order

May exhibit limit-cycling behavior near converged solution

Convergence no longer guaranteed

…but rarely a problem in practice if M isn’t too large

A
B
C
D

Conventional SQS-M
Initialize 𝜇 = 𝜇 

For 𝑛 = 1,2,3, … , 𝑁 iterations
For 𝑚 = 1,2,3, … , 𝑀 subsets

1) 𝑙 = 𝐀𝒎𝜇 forward project
2) �̇� = 𝑀 𝐀𝒎

𝑻 ℎ̇ likelihood gradient
3) 𝑑 = 𝑀 𝐀𝒎

𝑻 (𝛾 ⋅ 𝑐(𝑙)) likelihood curvature
…
Compute Δ 
𝜇 ≔ 𝜇 + Δ ା update image

A·C·B·D|A·C·B·D|A·C·B·D|A·C·B·D|···

17

GPU-based forward and back projection
Forward Projection

2D array

3D array

Ray driven
Trilinear 
interpolation

Projection

Volume

Source

Back Projection

2D array

3D array

Voxel driven
Bilinear 
interpolation

GPUs very efficient at ray 
tracing and interpolation!

18
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Accelerated Reconstruction

Conventional SQS-M
Initialize 𝜇 = 𝜇 

For 𝑛 = 1,2,3, … , 𝑁
For 𝑚 = 1,2,3, … , 𝑀

Compute Δ
𝜇 ≔ 𝜇 + Δ ା update image

Nesterov Acceleration (Nes-M)

Initialize 𝜇 = 𝜇  , 𝑣 = 0 , 𝑡 = 1
For 𝑛 = 1,2,3, … , 𝑁 iterations

For 𝑚 = 1,2,3, … , 𝑀 subsets
Compute Δ image update 
𝑣 ≔ 𝑣 + 𝑡Δ accumulated updates
𝑡 ≔ (1 + 1 + 4𝑡ଶ )/2 momentum weight
𝜇 ≔ 1 −

ଵ

௧
𝜇 + Δ ା conventional update

+
ଵ

௧
𝜇  + 𝑣

ା
momentum image

𝑣
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Accelerated Reconstruction
Nesterov Acceleration (Nes-M)

Initialize 𝜇 = 𝜇  , 𝑣 = 0 , 𝑡 = 1
For 𝑛 = 1,2,3, … , 𝑁 iterations

For 𝑚 = 1,2,3, … , 𝑀 subsets
Compute Δ image update 
𝑣 ≔ 𝑣 + 𝑡Δ accumulated updates
𝑡 ≔ (1 + 1 + 4𝑡ଶ )/2 momentum weight
𝜇 ≔ 1 −

ଵ

௧
𝜇 + Δ ା conventional update

+
ଵ

௧
𝜇  + 𝑣

ା
momentum image

Momentum weight t
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Acceleration Factor
Use objective function Φ to compare progress of algorithms A and B:

min 𝑛 s. t.  Φ 𝜇
ಲ ; 𝑦 ≥ Φ 𝜇

ಳ ; 𝑦

𝐀𝐜𝐜𝐞𝐥𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝐅𝐚𝐜𝐭𝐨𝐫:  AF 𝑛 = 𝑛/𝑛

Baseline algorithm: SQS-1 (no subsets)

Limit-cycle / unstable when 𝑀 too large
Nesterov AF increases with more iterations  Faster convergence rate than SQS
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Nesterov acceleration
Momentum term accumulates all previous iterations to guide 
current iteration

Simple modification, very little computational/memory cost
Accelerates convergence by >10x
~10 iterations sufficient

Full GPU implementation

Without acceleration Nesterov acceleration

197 sec9522 sec

Wang et al, Med Phys 42 2699 (2015)

22
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Other optimization approaches
Algebraic Reconstruction Technique (ART) – the original (iterative) reconstruction!

Parallel (SQS) vs serial (ICD)
Iterative coordinate descent (ICD)1

• Updates voxels serially
• Highly accurate updates, so only a few iterations required
• Slow on parallel hardware

Recent efforts to parallelize ICD on GPU2

• Voxels in z can be parallelized
• Distant voxels in axial plane are weakly coupled
• Memory ordering and access

1 Bouman and Sauer, IEEE TIP 1996 2 Hsieh et al, SPIE MI 2019
23

Other image regularization strategies

Zhang et al: Regularization strategies 
in SIR of LDCT, Med Phys 2018

AI

Mostly to enhance/denoise 
in image space …so far

24
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Other iterative methods

Other formulations
• ASD-POCS1

Incorporating prior information
• PICCS2

• dPIRPLE3

3 Dang et al, Phys Med Biol 59 4799 (2014)1 Sidky and Pan, Phys Med Biol 53 4777 (2008)
2 Chen et al, Med Phys 35 660 (2008)

argmin 𝑓 ் 𝑠. 𝑡. 𝑀𝑓 − 𝑔 ≤ 𝜖

Other iterative methods
Incorporating motion
• Motion-compensated recon1

Incorporating energy information
• Spectral PICCS2

Incorporating correlated measurements
• Gaussian Penalized-Likelihood with Blur and Correlations (GPL-BC)3

… and many more!

1 Brehm et al, Med Phys 39 7603 (2012)
2 Yu et al, Phys Med Biol 61 6707 (2016)

3 Tilley et al, IEE TMI 37 988 (2017)
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Sometimes easier to address the underlying problem, e.g., motion

Iterative recon isn’t a silver bullet!

Cai et al, Med Phys 46(3) 2019

Free breathing Breath hold

Standard CBCT Iterative CBCT

Summary

Iterative CBCT benefits:
• Noise reduction
• Reduced cone-beam artifacts
• Improved HU accuracy

Computational methods include:
• GPU implementation
• Ordered subsets
• Nesterov momentum

Many different approaches/flavors, but generally 
model imaging system, x-ray physics, and prior 
knowledge

CT
CBCT

adamwang@stanford.edu 28


