AAPM 2019 JUL 14–18 61st ANNUAL MEETING & EXHIBITION | SAN ANTONIO, TX BUILDING BRIDGES. CULTIVATING SAFETY, GROWING VALUE.

Explore New Dimensions in VMAT

KE SHENG, PH.D., FAAPM DIRECTOR OF PHYSICS RESEARCH DEPARTMENT OF RADIATION ONCOLOGY UNIVERSITY OF CALIFORNIA, LOS ANGELE

I	But we love VMAT!						
	Volumetric Modulated Arc Therapy is perceived more efficient than static beam IMRT						
	Maybe true						
	It is a more challenging optimization problem due to the additional mechanical constraints						
	MLC, gantry, couch and output need to be synchronized.						
Radiation	Oncology Rao et al. Med Phys. 2010 Mar;37(3):1350-9	UCLA					

A flatform to explore additional degrees of freedom in VMAT

Collimator rotation Combined couch and gantry rotation (4π VMAT) -Dual Layer MLC Other degrees of freedom

UCI A

FMO guided by selected collimator angle

$(1 - P_{b\alpha}) \|f_{b\alpha}\|_2$: angle selection

- $l_{2,1}$ norm turns off most candidate beams P_{ba} is 1 for selected collimator angle and 0 otherwise This term will not penalize selected collimator angle
- $\left\|D_{p}u\right\|_{2}$: Derivative matrix depending on $P_{b\alpha}$
- Minimize aperture difference between adjacent selected beams
 MLC leaf motion: 2.5cm/second

The pot	ential imp	olication of DC-V	МАТ
Millenn	ium 120		HD120
40×0.5 20×1.0	cm inner cm outer	3 2	2×0.25 cm inner 8×0.50 cm outer $22X \times 32X$
4017	There is a constant s	struggle to decide HD MLC or SD MLC e entirely avoided given DC-VMAT	221 × 327
Radiation Oncology	Ве	rgman et al. JCAMP. 15 (3), 2014	UCLA

_		 	 	

Computational challenge with increasing degrees of freedom 6M

(Compu degree	utatior es of fr	nal cha eedor	llenge n	with	increa	sing	
								1B
	coplanar IMRT	2p VMAT	4p IMRT	DCVMAT	4pVMAT	4p IMRT with	4pVMAT with	All freedoms
			Number of t	peamlets		variable STD	variable STD	

Is there a diminishing gain adding more degrees of freedom?

Time to reconsider the good old C-arm gantry?
It becomes harder and harder to incorporate the additional degrees of freedom into the inflexible C-arm gantry system
Radiation Oncology Technology, Innovation and Clinical Translation UCLA

