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Key topics

» Basic radiobiological processes that impact tumor
response,

 Variability of tumor regression and relationship to growth
fraction

» Local control following radiotherapy and impact of hypoxia.
* Relationship of SUVmax with local control.
* Modeling of tumor response

The importance of cancer stem cells
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Hypoxia reduces DNA damage
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(Desouky et al.,
J of Radiat Res
Appl Sci, 2015)

Fig. 1 - Direct and indirect actions of radiation (modified
from Hall & Glacela, 2011).

HNSCC outcomes depend on persistent hypoxia

Prospective clinical trial

Residual tumour hypoxia in head-and-neck cancer patients undergoing
primary radiochemotherapy, final results of a prospective trial on repeat
FMISO-PET imaging

Steffen Lock ™', Rosalind Perrin**', Annekatrin Seidlitz*, Anna Bandurska-Luque *,

Sebastian Zschaeck ““, Klaus Zéiphel *¥, Mechthild Krause ““* rg Steinbach®, Jorg Kotzerke ",
Daniel Zips ™', Esther G.C. Troost *““&"*2 Michael Baumann *~¢&2

(Rad Onc 2017)
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rHV1.6 = residual hypoxia volume w/ cutoff 1.6.
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Is classical cell kill dominant in SBRT/SRS?

Radiobiological basis of SBRT and SRS

Chang W. Song - Mi-Sook Kim - L. Chinsoo Cho -
Kathryn Dusenbery - Paul W. Sperduto

Int J Clin Oncol (2014) 19:570-578

“..., little is known about the effect of high dose
hypo-fractionated radiation on human tumor
vasculatures.”

“...irradiation of experimental tumors with high-dose
hypo-fractionated irradiation, i.e. [10-15 Gy/fraction],
causes profound vascular damage in various
experimental tumors”

Critical Review

The Tumor Radiobiology of SRS and SBRT: Are More Than
the 5 Rs Involved?
J. Martin Brown, PhD,* David J. Carlson, PhD,’ and David J. Brenner, PhD*

*Department of Radiation Oncology, Stanford University Schaol of Medicine, Stanfard, California; 'Department of
Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, and ‘Center for Radiological
Research, Columbia University Medical Center, New York, New York

(IJROBP, 2013)

“...for most tumors, the standard radiobiology concepts of the 5 Rs are sufficient to
explain the clinical data, and the excellent results obtained from clinical studies are
the result of the much larger biologically effective doses that are delivered with SRS
and SBRT”

Preclinical determinants of radiocurability

MULTIVARIATE DETERMINANTS OF RADIOCURABILITY I: PREDICTION OF
SINGLE FRACTION TUMOR CONTROL DOSES

LEO E. GERWECK, PH.D., SYED T. ZAIDI, M.S. AND ANTHONY ZIETMAN, M.D,

Department of Radiation Oncology. Edwin L. Steele Laboratory of Cellular Radiation Biology.
Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114

(IJROBP, 1994)

Stem cell fraction and slope of cell kill curve (i.e., radiosensitivity.)
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Combining estimate of
stem cell fraction with
radiosensitivity allows
prediction of tumor
radiocurability
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Modelling the interplay between hypoxia and
proliferation in radiotherapy tumour response

J Jeong', K T Shoghi’ and J O Deasy'

! Memorial Sloan-Kettering Cancer Center, New York, NY, USA
2 ‘Washington University in St. Louis, St. Louis, MO, USA

Phys. Med. Biol. 58 (2013) 48974919

Simulation model: the basics

» We introduce a ‘constant-resource’ tumor
response model .

Doomed Viable
Afier RT begins

» Chemical supply is assumed constant over
the course of RT

(Jeong et al. PMB (2013) 58:4897)




Non proliferating,
highly hypoxic
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Proliferation

Proliferation

Assume re-compartmentalizatii his leads to reoxygenation

After an (exaggerated) time step:

+ Assume oxygen and
glucose can ‘feed’ a
constant number of cells

+ Then re-distribution
constantly occurs that
assumes P is the
preferred state, then I,
then H.

+ This implies a

‘reoxygenation’ process

Impact of hypoxia: Carlson et al.

ay =ap/OERy and fx = B /OER}




Use the model at 2 Gy/day as a reference

* 2 Gylfx (5 fxiwk)

4.5 Gylfx (3 fx/wk)
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Survival fraction
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Personalized Medicine and Imaging

Modeling the Cellular Response of Lung Cancer
to Radiation Therapy for a Broad Range of ®
Fractionation Schedules we

Jeho Jeong’, Jung Hun Oh', Jan-Jakob Sonke®, Jose Belderbos®,
Jeffrey D. Bradley®, Andrew N. Fontanella', Shyam S. Rao”, and Joseph O. Deasy’

(2017)

« Dose response across different fractionation regimes:
Mehta et al. (Pract. Radiat. Oncol. (2012) 2:288-295)
(N=2189)

« Three additional cohorts (including WUSTL, NKI)
(N=512)




Tumor control rate
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Reproduces ‘kickoff’

Withers’ repopulation plot for H&N Ca

TOTAL DOSE (Gy) NORMALIZED to 2 Gy/Fx

The model reproduces the clinical trend
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Normalized in EQD2,5 (as the original Withers’plot), the slopes
become 0.59 (simulated) vs. 0.62 (clinical) Gy/day.
linear correlation: slope of 0.92 (R?=0.63) & r.= 0.74 (p<0.001)

TDs, in EQD2; (simulation)
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Estimation of clinical relative biological effect (cRBE) of carbon ion
radiation therapy (CIRT) for early stage lung cancer based on
mechanistic tumor response modeling

Jeho Jeong and Joseph O. Deasy

Memorial Sloan-Kettering Cancer Center, New York, NY

(To be presented at ASTRO 2019)
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Total number of cells in 10-cc tumour

| Tsang 24 Gy / 2t ‘ ®
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Now add 20% to physical dose!
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t required dose

Estimate of the impact of FDG-avidity on the dose required for head
and neck radiotherapy local control

Jeha Jeong*, Jeremy S. Setton ", Nancy Y. Lee ", Jung Hun Oh*, Joseph 0. Deasy**

“Department of

 and * Department of Rosarion Gnssi

(Radio Oncol, 2013)

Concer cones, Wew Fork usA
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FDG may predict radiocurability so well because...

« ltis correlated with hypoxia and OER

« It represents good/adequate blood flow
« It represents increased cell density

It identifies stem cell niches

 All of the above?

» This is an open question

Can radiomics help in understanding
tumor response?

12



Combined PET and CT radiomics features predict maximum FMISO uptake in head
and neck cancer (Crispin-Ortuzar et al.)

« FDG PET + contrast-enhanced CT
1o predict maximum FMISO TBR
79 training, 42 hold-out validation
LASSO + 10x10-fold CV
Selected predictors:
P90 FDG SUV
Long run high grey level
emphasis in low-FDG

Contrast CT

FDG PET
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Validation AUC = 0.83
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(2017, Phys Med Biol)

Methods to include image heterogeneity
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Prys. Mod. B, 62 (2017) 2658 287 151000010 1088136 1 65601085022

A radiobiological model of radiotherapy

p and its corr
with prognostic imaging variables

Mirela Crispin-Ortuzar', Jeho Jeong, Andrew N Fontanella
and Joseph O Deasy
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H&N hypoxia histogram evolution during RT
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Works well for about 60% of tumors studied thus far.

M. Crispin-Ortuzar, M. Grkovski, B. Beattie, ). Humm, N. Lee, N. Riaz, unpublished.

What about dynamic contrast imaging?

Semi-quantitative Parameters

Three-time-points method
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(Slide courtesv Neelam Tvaai and Sana Ho Lee)
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Mesothelioma

Case #1
TTP
(min)
(slide courtesy

TTHP of Neelam
(min) Tyagi)

PET-CT

Fusion

Better fluid transport approaches to DCE

Optimal mass transport kinetic modeling for head and neck
DCE-MRI: Initial analysis

Rena Elkin' | Saad Nadeem® | Eve LoCastro® | Ramesh Paudyal’ |
Vaios Hatzoglou® | Nancy Y.Lee' | Amita Shukla-Dave™ | Joseph O. Deasy’ |
Allen Tannenbaum®

Magn Reson Med. 2019;00:1-12.

O p+V-(w) = V-(DVp),

Key summary points

» Imaging provides crucial insights into tumor biology

» Methods to understand tumor heterogeneity are only now
being developed

» Imaging provides powerful tools to potentially understand
outcomes variations

» Imaging and radiomics will increasingly be used to stratify
patients in the future.

» Imaging should be combined with modeling to form
testable hypothesis and to maximize scientific insight!
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