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Introduction

= Mathematical modeling & optimization plays a large role in radiotherapy
= Delivery —treatment planning
= Fractionation — NTCP/TCP trade-offs
= Target dose — BED
= MCO - OAR tradeoffs
= Emerging also for design of drug regimen (#mathonco)

|:‘> Aim: introduce a cross section of mechanistic mathematical
models for trial design & patient-specific treatment adaptation

Mechanistic Mathematical Modeling &
its place in the ecosystem

[ ]
Clinical Observations m

on different scales: Improved treatment
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- Treatment scheduling
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Imaging - New compounds
Omic / biomarker - Drug dynamics
Figure idea
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Mechanistic Mathematical Modeling &
its place in the ecosystem

Mathematical Modeling @
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- How?
" ‘. - Evolutionary dynamics
= - Bridges scales
- In silic
Clinical Observations nalic
on different scales . Improved reatment
Outcome Statistical Modeling - Treatment scheduling
N -Whatand when? -C
Imaging - Observed relationship - New compounds
Omic / biomarker - Drug dynamics
Experimental Model Systems
- Who and how?
- Biological pathways / targets Fgureidea
@ - Experimental validation Ryan Sehenk
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Modeling interaction of chemotherapy & radiation

= Simplest way to quantify the effect: Hazard Ratio
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Modeling interaction of chemotherapy & radiation

= Simplest way to quantify the effect: Hazard Ratio

= Include them in TCP models

* |ndependentaction
Chemo-only survival  Radiation-only survival
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Modeling interaction of chemotherapy & radiation
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= Simplest way to quantify the effect: Hazard Ratio

Include them in TCP models [ rp—
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Radiosensitization factor: ~ f.

BED = f,D- (1

Modeling interaction of chemotherapy & radiation

= Simplest way to quantify the effect: Hazard Ratio

= Include them in TCP models

= Independentaction
Chemo-only survival  Radiation-only survival

v «
08 = CS + RS (1 — CS)
chemo equals a dose of X GyE

= Radiosensitization: TCP = f(BED)

fovd) w2 T
a/p a Ty

Radiosensitization factor: ~ f,

BED = f,D- (1 +

additive effect only Radiosensitization

Plataniotis et al. (2014) LIROBP

Dynamic Models of Therapy

= formulations often based on ordinary differential equations

dt
L

Gompertz

= Tumor growth: Gompertz ( ’ 2)
~(ap+bD
= Radiation cell kill - Linear-Quadratic: SF" = e
= Chemo cell kill - Log cell kill: SF = ei(an(l))
dN K | Treatpent
—_—= rN(t)Iog[i]— b.C@N@) - (abD+ bD*)N(r) !
NGO ( ) \
X = T ! L \ Gompertz
[(Grown | [ chemotherapy | [ Radiation | Growth
" ’ E3 150 50 200
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Modeling
Multi-
Modality % = rNG) |og(T’;))f bLWON) ~(an+ bD?) N (1)
Therapy
for NSCLC
Survival of Gengetal
untreated patients Scientific Reports 2017
Stage | —
Natural disease course —
Stage I Tumor growth and
patient death model
Mode“ng RT only model
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for NSCLC distribution
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Modeling
Multi-
Modality
Therapy
for NSCLC

Survival of
untreated patients

Stage |

Stage Il

RT only model

Radiosensitivity
distribution

Natural disease course —
Tumor growth and
patient death model

Combined chemo-radiation model

K
NG

rN(z)log(

RTOG 8808
ly

T

sequential
chemo-
radiation
(RTOG 9410)

Cell number

chemo-only
trials.

BN - (sD+ bDZ)N(l)

Gengetal
Scientific Reports 2017

Chemotherapy only model

Dynamic Models of Therapy

= Explicitly time-dependent
= ability to explore different sequencing options

= Uses underlying clinical data for fitting more effectively

Survival

~a- sequential CRT
7 Concurrent CRT

Model

Survival

—a— Sequential CRT
=~ Concurrent CRT

Clinicalitrials

Gengetal
Scientific
Reports 2017

Dynamic Models of Therapy

= Explicitly time-dependent
= ability to explore different sequencing options

= Uses underlying clinical data for fitting more effectively

= Based on distributions of parameters describing a heterogeneous patient

population

= Pro: Monte Carlo sampling techniques for more accurate sample size calculations

virtual clinical trials to estimate required sample size

Randomly 10+ 104
sampling s N=sz
PDFs w [ w
— Fosq Sos
e it
a0 00"

20 40 60

time [months]

N=256

80
time [months]
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Dynamic Models of Therapy

= Explicitly time-dependent

ability to explore different sequencing options
Uses underlying clinical data for fitting more effectively

Based on distributions of parameters describing a heterogeneous patient
population

Pro: Monte Carlo sampling techniques for more accurate sample size calculations

Con: not possible to make patient-specific predictions due to unknown patient-specific
parameters;

Radiosensitivity
distribution

Dynamic Models of Therapy

= Explicitly time-dependent

ability to explore different sequencing options

Uses underlying clinical data for fitting more effectively

Based on distributions of parameters describing a heterogeneous patient
population

Pro: Monte Carlo sampling techniques for more accurate sample size calculations

Con: not possible to make patient-specific predictions due to unknown patient-specific
parameters;

Radiosensitivity Index (RSI)

A genome-based model for adjusting radiotherapy dose
(GARD): a retrospective, cohort-based study
Radiosensitivity i apris

distribution

Dynamic Models of Therapy

= Explicitly time-dependent

ability to explore different sequencing options

Uses underlying clinical data for fitting more effectively

Based on distributions of parameters describing a heterogeneous patient
population

Pro: Monte Carlo sampling techniques for more accurate sample size calculations

Con: not possible to make patient-specific predictions due to unknown patient-specific
parameters

Explicit modeling of tumor dynamics over time [dN(t)/dt]
enables connection to individual tumor trajectories
via serial imaging studies




Dynamic Models of Therapy

= provides a framework to include other modalities, such as targeted agents

dN _ K >
o rN() Iog[mj - b,CON() - (aD+ bD?) N (1)

= Explicit modeling of tumor dynamics over time [dN(t)/dt
enables connection to individual tumor trajectories

/ O Imaging
Timepoints

via serial imaging studies

Outline

= |ntroduction / Motivation
= Dynamic models
= chemo-radiation as an example

= Modeling molecularly targeted agents
= deriving population dynamics from macroscopic tumor volume
trajectories

= Modeling Immunotherapy (+RT)
= Conclusion & Discussion

Targeted Therapy
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Targeted Therapy

= Very successful in Non-Small Cell Lung :
Cancer (NSLC) Z,
. . £
= Main oncogenic driver mutations for gm
which FDA-approved inhibitors exist: i
EGFR & ROS/ALK b H
10 0
Groraion ™ Patrun " Panm " Gain " Gioimb  Gent
chematherapy  doublets  doubletsand (2009) (@009) (2009)
_ @0 @0 bewams  guam gme e
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b Pao et al. Nature Reviews 2010
i = better toxicity profiles

- different mode of administration to
Lin et al. Trends in C: \ .
0160 20 s chemo; not IV in cycles, but daily oral uptake

Targeted Agent Effect Models

= Similar to chemo, but need something additional = resistant sub-populations

Modeling more sensitive to exact growth models

exponential growth is bad approximation over long time periods
more realistic growth models exhibit decreasing growth rate with increasing tumor size
most popular: Gompertz, Logistic

-rir(f) Gompertz

dv(t) _ dr(t) _
Ta OO =

Targeted Agent Effect Models

= Similar to chemo, but need something additional = resistant sub-populations

Modeling more sensitive to exact growth models
= Resistance development

Mathematical formulation based on work in bacteriology (Luria & Delbrueck)

Used stochastic processes with a differentiation hierarchy to represent sensitive & resistant cells

a Treatment

Waclaw et al. Nature 2015




Modeling Resistance

= Pre-Existing Resistance

radiographicrecurrence

@
exposure g

Lo, growth in
TKi-sensitive  dN,f (z){ <) g () absence of drug

opulation N i
pop s dr bt g K K(1) celllossin
N,(r) Ppresence of drug

population Ny dt N,(0) presence of drug

— B Lty

iTKHeslstam WO gy 01or KO K() growth independent of

Modeling Resistance

= Pre-Existing Resistance
® Acquired Resistance (Persister-Evolution)

radiographicrecurrence

exposure

dN,(t
persister () = (P> R)-N, (1) transition to
population Ny ¢ resistant cells

k() growth independent of
XN (1) lo
i TKk-resistant R(l){ W00 presence of drug

population Ny ¢ +(P—>R)-N,(f)  trensition from
r persister cells
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Modeling Resistance — Tumor Growth Trajectories

Serial Patient
Imaging

T treatment §
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Modeling Resistance — Tumor Growth Trajectories

Serial Patient

Imaging e Siage oo 17
Scovors ot {7

vivo coll kil parameter
i)

Modeling Resistance — Tumor Growth Trajectories

emission Stage:
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(patient speciic)
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regrowth kinetics:
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Modeling Resistance — Tumor Growth Trajectories

Serial Patient

Imaging remeson Sige
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popuation (gompertzan): gy
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Modeling Resistance — Tumor Growth Trajectories

Serial Patient

Imaging emissionsiage: 1og €70 | regromth nets:
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Modeling Resistance — Tumor Growth Trajectories

TKI (Brxr)  Regrowth(p,
pre- treatment response recurmence

Lt

log # clonogens

13 days TKI day 51 TKI day 107
pre-treatment (lesponse)  (recurence) o

200

100
time [days]

B Nyvnsitve & Nperison BB Nrsisane

Grassberger*, McClatchy* et al.
CancerResearch 2018

Modeling Resistance — Tumor Growth Trajectories

tumor # 2 tumor # 12
10 10
2 w0 P
210 g
; 2
g w0 g 10
= =
8w g
10" 10’ ?
-100 100 200 0 100 200 300
time [days] fime [days]

Based on macroscopic tumor volume trajectories, we can estimate the dynamics of
persister/resistant cells during treatment with targeted agents

7/16/2019
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Rationale for Modeling

= Targeted agents currently only used in a stage IV setting
= Targetable mutations also exist in stage Il disease

Concurrent chemoradiation (CRT) 60-74Gy
Geme @ @ & & &
aaaaton I IONLTOODL 00D HORRR

— V- R s

Rationale for Modeling

= Targeted agents currently only used in a stage IV setting
= Targetable mutations also exist in stage Il disease
> NCT01553942 — the ASCENT trial

themo @ @ & & &
radavon IIE N0 OO0 10N HROOE
raciation (I L TNE 1EE- MO0

WA TARVARD
27 MEDICAL SCHOOL

Rationale for Modeling

= Scenario |: TKI induction—TKI serves as clonogen reduction to support CRT

cadiation 1IN HE 1L H0RRD TORDE

WA TARVARD
27 MEDICAL SCHOOL
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Rationale for Modeling

= Scenario I: TKI induction—TKI serves as clonogen reduction to support CRT

| Xveoks T nducion o M P
S T R IR IR

= Scenario Il: TKI Maintenance therapy — chemo-radiation should be employed to
minimize resistance development

| Xweos T nducion e MMM
swen I I T O 0

— 2 HI"“ &

™ T

resistant sensitve

Shortinduction period

CRT
@ ®
el

S0 T induction T3 Maienance

Bo McClatchy - Modeling Local Versus Distant Tumor
Recurrence in Non-Small Cell Lung Cancer Patients
Receiving Combined Chemoradiotherapy and
Molecularly Targeted Drugs
CRT Session:  Image Analysis for Response Assessment
. ° . Time: Wed 7/17 8:30am

[ —— Room: 225BCD

Longinduction period

Long Tl ncution T Maintenance

WA TARVARD
27 MEDICAL SCHOOL

T

e oo Open Questions

Shortinduction period

= Can we use only targeted agents + RT
CRT (without chemotherapy)?
. . . ®  Best combination / sequencing?
— —

‘Short T nducion THI Matenance = Does this differ when treating
oligometastatic disease (stage IV) with
Longinduction period RT?
CRT .
o. ®
- ——
Long T cucton T Materance

7/16/2019
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Outline

Introduction / Motivation

Dynamic models

= chemo-radiation as an (‘dep‘(‘
Modeling molecularly targeted agents

- (1(‘!’\\/\(1% F)(J[IU‘AT\UH d‘/'WHITHC‘, from macrosc opic tumor volume
trajectories

Modeling Immunotherapy (+RT)
Conclusion & Discussion

Immuno — RT modeling

dT
=) T
” r(t)

Tumor

Immuno — RT modeling

p(T1)

A T - (T, 1)
d(7))  Immune dt
Tumor ——— effector

cells dl ;i
N & =D =d(T0-a, D+ 4@
production/death I
apoptosis
treatment
Rana e

7/16/2019
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Immuno — RT modeling

pATl)

d(T/)  Immune
Tumor ——— effector

w cells

dar
— =T -d (T, I
o (1) (T,1)

dl

AT D) -d (T, 1)=a,(1)+J ()

dt
production/death I
Michaelis-Menten apoptosis
dynamics: treat "
reatmen

Ay T,

dt  s+T

o ——

Immuno — RT modeling

p(T1)

d(T1) Immune
Tumor —— effector
cells

N\

dT

E:r(t)XT—dT(T,I)

dl

—=p(T1.1)-d/(T,1)-a,()*J(¢)

dt

production/death

I

cytokines, dendritic Michaelis-Menten apoptosis
cells, PD-L1 d .
concentration, ... ynamics: treatment
T,
dt  s+T
T

Immuno — RT modeling

pATI)

d(7))  Immune
Tumor ——— effector
cells

dT

E:r(t)XT—dT(T,I)

dl

7/16/2019

N & =D =d(T0-a, D+ F@)
= These very simple models can
e tenditic reproduce the basic behaviours of

cells, PD-L1 the tumor-immune interaction:
Eaeencation, .. elimination - equilibrium - escape
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Systemic vs Regional-Interacting Models

dge %
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Grassbergeret al.

Nat Rev Clin Onc 2018

Systemic vs Regional-Interacting Models

Spsemic ol
i €
@
U e
effector cells )A
Wonmo Sung
“Modeling of Tumor and Immune Cell
{)QQ :\m ng Interactions in Hepatocellular
et || e Carcinoma Patients treated with RT”

Grassberger et al.
Nat Rev Clin Onc 2018
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Systemic vs Regional-Interacting Models

Systemic modets Regional-interacting models

B metasiash

Multiple
tumor and
local
lymphocyte
compartments

Avtigens releuned | aeti CTLA:
o sumour cebs

Sand
44-COA0 amtibodies,

Grassberger et al.

Nat Rev Clin Onc 2018
) MEDICAL SCHOOL =
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Systemic vs Regional-Interacting Models

Systemic models Regional interacting models
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Grassbergeret al.
Nat Rev Clin Onc 2018
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Systemic vs Regional-Interacting Models

Brain metassais

i @ P—
Serum biomarkers Imaging (PLT. SPECT and MRD. Nat Rev Clin Onc 2018
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Systemic vs Regional-Interacting Models

Data collection snd processing stage Beain metsstois
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Rachel Walker et al. 2017 Grassbergeret al.
Converg Sci Phys Oncol Nat Rev Clin Onc 2018
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Imaging the Immune Response

* MRI
* Several magnetic contrast agents for visualizing the immune response
* superparamagnetic iron oxide nanoparticles (SPION)
* 2 major shortcomings:
* Low sensitivity - if population of interest is low density ...
« direct quantification of signal (e.g. molar concentration
of contrast agents) can be difficult

Bulfe et al. NMMI 2009

Imaging the Immune Response

* MRI
* SPECT /PET

« preclinical studies have reported successful imaging of T and B cell populations
using radiotracer-labeled anti- T and anti-B cell antibodies, or antibody fragments

B "zr-GAcMb

an

240 %IDlg
100

Imaging the Immune Response

* MRI
* SPECT /PET

Assessing the interactions between
radiotherapy and antitumour immunity

Clemens Grassberger®'*, Susannah G. Elisworth?, Moses Q. Wilks', Florence K. Keane'
and Jay . Loeffer'
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The Case for Immunotherapy-RT Modeling

The Case for Immunotherapy-RT Modeling

Immune checkpoint inhibitors - stage Il NSCLC
PACIFIC trial: Durvalumab (PD-L1) after chemo-radiation in stage Ill NSCLC

Prbabity o Progrssion e Suml

Ounalumsb 24476 85 IS0I8Y 55961060 42077505
Tabe W Sedery | Bageean Hopasi

adjuvant Immunotherapy

Chemo-radiation to 60-66Gy in 2Gy/fx

immune response

Dynamic models of tumor development and therapy effect enable

Summary |

connection to serial imaging analyses

Combining RT with targeted agents requires new approaches & extended

models

Growth — realistic growth models due to longer time frames

Resistance — emergence of completely resistant sub-populations

shifting aims —is the purpose of the RT regimen either to

Essential for their inclusion in stage I, raises interesting question/trade-off:

maximize cell kill OR
minimize resistance development (to EGFR/ALK/ROS inhibitor)

is RT there to support the agent or the other way round?

7/16/2019
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Summary Il

= Modeling Immunotherapy + RT

= Immune response imaging techniques (MRI, SPECT, PET)

= Systemic vs Regional-Interacting models

= Tumor seen as one compartment vs explicit treatment of different sites
= Informing different questions in stage IlI/IV

= emerging question in stage Il disease:

Is the purpose of the (chemo-)RT regimen to
maximize cell kill ?
OR

maximize / modulate the immune response ?
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Prevalence of Concurrent Therapy = potential for Targeted Agents + RT
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= Patients treated with combined chemo-radiation

Incidence US 2015 Percentage treated with  Targetable
number in 000 d mutations
Breast 234 (14.1) HER2, mTor, COK4/6
Lung 221 (133) £GFR, ALK, ROS, VEGFR2), MET,
v
Colon 93(5.6) 209%™ VEGFR2), EGFR,KIT/RAF
Bladder 74(4.5) 30%** Possibly EGFR, FGFR3, mTOR,
PIK3CA. RAS,
Non-HL 72(4.3) 12% CD20/30, PI3K
Uterine corpus 55(3.3) 129%* VGE
Head and Neck 16(2.8) 30%" EGFR, PI3K, Notch
Rectal 40(2.4) 12% VEGHR2), ECHR,KIT/RAT
Total 835 (50.4) 26%
e oo, @
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Introduction

Optimization plays a large role in radiotherapy: delivery, fractionation,

target dose, OAR tradeoffs
Emerging role in design of drug regimen
(example to follow)

General aim: introduce clinically
applicable models to help in trial
design & patient-specific
treatment adaptation

Overview over Clinical Studies

= Additive Effects:
= Head and Neck: 7-12 Gy
= Anal Cancer: 4-8 Gy
= Cervical Cancer: 0.5-8 Gy

= radiosensitization factors: 1.2-1.35 in pancreas & bladder

Tobe . Qs -
= o = o hemmterry
Putaioi ad D 2008) Corvin [r——

Kl ol U7y ad ot Hond s ek [—

Mo sty [— sent

Pl ad Dul 2014) Blaier

[

Fmcre
Hartley of ol 2010) Head and seck

7/16/2019

Pttt (2015

ety

Heal snd seck

7 Gy, depenting cn

Grassberger &

SEUMRI Gy Paganetti, PMB
2016

sl

Overview over Clinical Studies

Additive Effects:

= Head and Neck: 7-12 Gy
= Anal Cancer: 4-8 Gy

= Cervical Cancer: 0.5-8 Gy

radiosensitization factors: 1.2-1.35 in pancreas & bladder
Main Challenge: low “dimensionality” of clinical outcome data

makes fitting of complex models difficult additive effect only. Radiosensitization

22



Overview over Clinical Studies

= Additive Effects:
* Head and Neck: 7-12 Gy
= Anal Cancer: 4-8 Gy
= Cervical Cancer: 0.5-8 Gy
= radiosensitization factors: 1.2-1.35 in pancreas & bladder
= Main Challenge: low “dimensionality” of clinical outcome data
makes fitting of complex models difficult

= One solution: use the whole survival e

curve, or even patient-level data to 5

inform models 3 (“;Tn
= dynamic models of clonogenic growth . Growth

Concurrent vs Sequential CRT

= |dea: to combine radiation-only & chemo-only models = derive in-vivo
radiosensitization factor

= Difference between concurrent and sequential explained by shorter treatment time
-> stratify the patients by growth rate results in variable difference between

sequential and concurrent CRT imedian VDT: 125 days
1o f, —a- Sequential CRT

=~ Concurrent CRT
1 Noes Model

volume doubling time [days]
survival benes

concurrent vs sequential at 5 years

top quartile 14.1%
bottom quartile 0.9%
o W

dynamics of resistance

()
L0

()
N

N, () s, 01ogKC —b1:x,_()10g KO

N.(0)

a,
senstvepoputation L=z ¥, ()log

N0 0} .
resistant poputation D=2 g v og KO sapn_ )
P o N (0log V.0 o)
remission Stage: 1og, £%ex| regrowh inetics:
ippers ogcet ki | gowth et esstan v 00 K 6
Pomdation (Gompertaany: o]
> invivo el i parameter o - Pty
(gatient speciic) Mutation inducion rate: " T-egy 75

TKI Treatment

> growth rate (voT)

Gt specihe
H N - mutation induction

R \,

I N 4

[ P o e = spoce)

> resistant population
atreatment tart N(=0)
(patent specifc)

dominates
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Modeling Resistance — Tumor Growth Trajectories

Serial Patient remission Stage: \ ;y i regrowth kinetics: ., Yy 2 K 0
Skipper's log-cel kil 10,62 Growth rae of resistant o= £17(1):loge2—|
Imaging | | POPUIION (gompertzian): o
 in vivo cel kil parameter a e H1og(e()
+ | patientspeciic) Mutation induction rate: "~ T_exp(- )
& i 1
* )
g > mutaton
£ nducton rate 1
: 35 (mutatonipopuiat
i L ion specitcy
H L $$
F / > & population
5 /7

pre-existing . _ _
e resistance A =OHV(1=0)
{ population =

Phasel Phase . reversal

remission Mixed popuiation, resistant popuiation

sensilive popuiation || significan, but not yet dominant
nates.

Phase I progression
esistant popuiation
dominates

Rationale for Modeling

= Targeted agents currently only used in a stage IV setting
= Targetable mutations also exist in stage Il disease
= Application: to find optimal induction lengths for stage Il patients (patient-specific?)

Short Responder Medium Responder Long Responder

m Time toprogression: 43m W Timeto progression: 12m M Time to progression: 36m

M) CRT optimalafter: 9 weeks W CRT optimal after: 1 weeks WM CRT optimal after: 24 weeks

Rationale for Modeling

= Targeted agents currently only used in a stage IV setting

= Targetable mutations also exist in stage Il disease

= Application: to find optimal induction lengths for stage Il patients (patient-specific?)
= Maintenance therapy

+TKI
Cemo ® @ @ @ @ | maintenance
Xweeks TKI inducti
MEek Tl netiction . waiavion I ML HHLRE D00 000D until

Lo acal progression

= TKI Induction: TKI serves as clonogen

e reduction to aid chemo-radiation
——4—| * TKimaintenance: chemo-radiation should
A\ recurence be employed to minimize resistance

development
= similar to oligometastatic disease

sime (ayel
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Immuno —

p(T1)

Arm 1: 2 wks. TKI Induction, 6.6 wks. CRT, TKI
J\ Meinienence Unil Recurrence

K AT T Mantenance
AT, | TMMenen

A 2: 12 wks. TKI Induction, 6.6 wks. CRT, TKI
Maintenance Until Recurrence

- @

sensitive

T2wks.TW | CRT T Maintenance
—

a1

Bo McClatchy - Modeling Local Versus Distant Tumor Recurrence
in Non-Small Cell Lung Cancer Patients Receiving Combined
Chemoradiotherapy and Molecularly Targeted Drugs

Session;  Image Analysis for Response Assessment

Time: Wed 7/17 8:30am

Room: 225BCD

RT modeling: local models

A

gy Immune Tumor (T) =) T2
Tumor —— effector :

d:(T)) cells

= Need additional
information: T cell
[ trafficking between

cytokines, dendritic
cells, PD-L1
concentration, ....

Type

sites

Polesczuk et al, Cancer  Walker et ol. Scientific
Res 2016; 76(5) Reports (2018) 8:9474

s of Modeling Approaches

= Two "axes” on which models can be distinguished:

= General <-> Site-Specific
= Phenomenological <-> Mechanistic

invitro =
= Models parameterized using E
= invitro data
= clinical patient data )
= Focus on clinical applicability clinical data :
-> phenomenological models based 1

on outcome data
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Modeling Therapy

= Two typical methods to develop a mathematic model

Which approach is
bott ich - approsc
pribiwdeg ey Bt ot 2015 advisable depends on the

research question and
available data at hand, but
generally itis assumed
that:

ol it

Grassberger & Paganetti, PMB 2016

i TiauARD
— P i scroon

Types of Modeling Approaches

= Two "axes” on which models can be distinguished:
= General <-> Site-Specific
= Phenomenological <-> Mechanistic

= Models parameterized using
= invitro data
= clinical patient data

oo, ) o
005 - i Koy IS

Phenomentlogisl em————————————— Mechanisic

Grassberger & Pagans

TR TARVARD
_ S MEDIEAL scHooy

Types of Modeling Approaches

= Two "axes” on which models can be distinguished:
= General <-> Site-Specific
® Phenomenological <-> Mechanistic

= Models parameterized using
= invitro data
= clinical patient data

= Focus on clinical applicability

General 4 She-Spacihc

-> phenomenological models based
on outcome data

TR TARVARD
_ 2P/ MEDICAL scrooL

Grassberger & Paganetti, PMB 2016
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