

Outline

- Introduction / Motivation
- Dynamic models
- chemo-radiation as an example
- Modeling molecularly targeted agents
 - deriving population dynamics from macroscopic tumor volume trajectories
- Modeling Immunotherapy (+RT)
- Conclusion & Discussion

111

Introduction

- Mathematical modeling & optimization plays a large role in radiotherapy
 - Delivery treatment planning
 - Fractionation NTCP/TCP trade-offs
 - Target dose BED
 - MCO OAR tradeoffs
- Emerging also for design of drug regimen (#mathonco)

Aim: introduce a cross section of mechanistic mathematical models for trial design & patient-specific treatment adaptation

Mechanistic Mathematical Modeling & its place in the ecosystem

HARVARD MEDICAL SCHOOL MASSACHUSETTS. RADATION ONCOLOGY

Mechanistic Mathematical Modeling & its place in the ecosystem

Mechanistic Mathematical Modeling & its place in the ecosystem

Modeling interaction of chemotherapy & radiation

Modeling interaction of chemotherapy & radiation

Simplest way to quantify the effect: Hazard Ratio

MARVARD MEDICAL SCHOOL MASSACHUSETTS CENERAL HOSPITAL RADIATION ONCO (in)) -

Modeling interaction of chemotherapy & radiation

Simplest way to quantify the effect: Hazard Ratio

Modeling interaction of chemotherapy & radiation

Dynamic Models of Therapy

- formulations often based on ordinary differential equations
 - Tumor growth: Gompertz
 - Radiation cell kill Linear-Quadratic: $SF = e^{-(aD+bD^2)}$
 - Chemo cell kill Log cell kill: $SF = e^{-\left(\partial D(t)
 ight)}$

Dynamic Models of Therapy

- Explicitly time-dependent
 - ability to explore different sequencing optionsUses underlying clinical data for fitting more effectively

Dynamic Models of Therapy

- Explicitly time-dependent
 - ability to explore different sequencing options
 - Uses underlying clinical data for fitting more effectively
- Based on distributions of parameters describing a heterogeneous patient population

Pro: Monte Carlo sampling techniques for more accurate sample size calculations

Dynamic Models of Therapy

- Explicitly time-dependent
 - ability to explore different sequencing options
 - Uses underlying clinical data for fitting more effectively
- Based on distributions of parameters describing a heterogeneous patient population
 - Pro: Monte Carlo sampling techniques for more accurate sample size calculations

MARVARD MEDICAL SCHOOL

Con: not possible to make patient-specific predictions due to unknown patient-specific parameters;

Dynamic Models of Therapy

- Explicitly time-dependent
 - ability to explore different sequencing options
 - Uses underlying clinical data for fitting more effectively
- Based on distributions of parameters describing a heterogeneous patient population
 - Pro: Monte Carlo sampling techniques for more accurate sample size calculations
 - Con: not possible to make patient-specific predictions due to unknown patient-specific parameters;

Dynamic Models of Therapy

- Explicitly time-dependent
 - ability to explore different sequencing options
 - Uses underlying clinical data for fitting more effectively
- Based on distributions of parameters describing a heterogeneous patient population
 - Pro: Monte Carlo sampling techniques for more accurate sample size calculations
- Con: not possible to make patient-specific predictions due to unknown patient-specific parameters
 Explicit modeling of tumor dynamics over time [dN(t)/dt] grad and a specific prediction to individual tumor trajectories via serial imaging studies

Dynamic Models of Therapy

provides a framework to include other modalities, such as targeted agents

$$\frac{dN}{dt} = rN(t)\log\left(\frac{K}{N(t)}\right) - b_c C(t)N(t) - \left(\partial D + bD^2\right)N(t)$$

- Explicit modeling of tumor dynamics over time [dN(t)/dt] enables connection to individual tumor trajectories via serial imaging studies

HARVARD MEDICAL SCHOOL MASSACHUSETTS GRINERAL HOSPITAL RADIATION ONCOLOCY

Outline

- Introduction / Motivation
- Dynamic models
- chemo-radiation as an example
- Modeling molecularly targeted agents
 - deriving population dynamics from macroscopic tumor volume trajectories
- Modeling Immunotherapy (+RT)
- Conclusion & Discussion

HARVARD MEDICAL SCHOOL

111-5

Targeted Therapy

Targeted Therapy

Targeted Agent Effect Models

- Similar to chemo, but need something additional ightarrow resistant sub-populations .

.

Targeted Agent Effect Models

- Similar to chemo, but need something additional ightarrow resistant sub-populations .
- . Modeling more sensitive to exact growth models
- . Resistance development
 - Mathematical formulation based on work in bacteriology (Luria & Delbrueck)
 - Used stochastic processes with a differentiation hierarchy to represent sensitive & resistant cells

Modeling Resistance

Modeling Resistance

Modeling Resistance - Tumor Growth Trajectories

Modeling Resistance – Tumor Growth Trajectories

Modeling Resistance - Tumor Growth Trajectories

Modeling Resistance – Tumor Growth Trajectories

Modeling Resistance – Tumor Growth Trajectories

Modeling Resistance - Tumor Growth Trajectories

Modeling Resistance – Tumor Growth Trajectories

 Based on macroscopic tumor volume trajectories, we can estimate the dynamics of persister/resistant cells during treatment with targeted agents

11

HARVARD MEDICAL SCHOOL MASSACHUSETTS RADIATION ONCOL

Rationale for Modeling

- Targeted agents currently only used in a stage IV setting
- Targetable mutations also exist in stage III disease

tumor	Concurrent dhemastatistic (KT) (20-35by Commo Rutation	
	HARVARD MIDICAL SCHOOL MARKANINGTON RAIMATION ONCOLOCY	

Rationale for Modeling

- Targeted agents currently only used in a stage IV setting
 Targetable mutations also exist in stage III disease
- → NCT01553942 the ASCENT trial

Rationale for Modeling

Scenario I: TKI induction-TKI serves as clonogen reduction to support CRT

Rationale for Modeling

Scenario I: TKI induction- TKI serves as clonogen reduction to support CRT

Open Questions

- Can we use only targeted agents + RT (without chemotherapy)? Best combination / sequencing?
- Does this differ when treating oligometastatic disease (stage IV) with RT?

MARVARD MEDICAL SCHOOL

111

Outline

- Introduction / Motivation
- Dynamic models
- chemo-radiation as an example
- Modeling molecularly targeted agents
 - deriving population dynamics from macroscopic tumor volume trajectories

HARVARD MEDICAL SCHOOL WMASSACHUSETTS GENERAL HOSPITAL BARTARYN ODECH OXY

- Modeling Immunotherapy (+RT)
- Conclusion & Discussion

1111-1

Immuno – RT modeling

Immuno – RT modeling

Immuno – RT modeling р_I(Т, I) $\frac{dT}{dt} = r(t) \times T - d_T(T, I)$ d_I(T,I) Immune Tumor effector $\frac{dI}{dt} = p_I(T, I) - d_I(T, I) - a_I(I) + j(t)$ d_T (T, I) production/death cytokines, dendritic cells, PD-L1 concentration, apoptosis Michaelis-Menten dynamics: $\frac{dI}{dt} = \frac{c_{\max} \times T}{s+T}I$ treatment HARVARD MEDICAL SCHOOL in the

 $\frac{dT}{dt} = r(t) \times T - d_T(T, I)$ $\frac{dI}{dI} = r_T(T, I) - d_T(T, I) - r_T(I)$

 $\frac{dI}{dt} = p_I(T,I) - d_I(T,I) - a_I(I) + j(t)$

 These very simple models can reproduce the basic behaviours of the tumor-immune interaction: elimination - equilibrium - escape

Systemic vs Regional-Interacting Models

MARVARD MEDICAL SCHOOL RADATION ONCO

Systemic vs Regional-Interacting Models

Wonmo Sung

"Modeling of Tumor and Immune Cell Interactions in Hepatocellular Carcinoma Patients treated with RT"

> Grassberger et al. Nat Rev Clin Onc 2018

Systemic vs Regional-Interacting Models

HARVARD MEDICAL SCHOOL

Systemic vs Regional-Interacting Models

Systemic vs Regional-Interacting Models

Systemic vs Regional-Interacting Models

Imaging the Immune Response

- MRI
 - Several magnetic contrast agents for visualizing the immune response • superparamagnetic iron oxide nanoparticles (SPION)

 - 2 major shortcomings:
 - Low sensitivity if population of interest is low density ...
 - direct quantification of signal (e.g. molar concentration of contrast agents) can be difficult

Bulte et al. NMMI 2009

HARVARD MEDICAL SCHOOL MASSACHUSETTS GENERAL HOSPITAL RAMATION ONCO

Imaging the Immune Response

• MRI

• SPECT /PET

preclinical studies have reported successful imaging of T and B cell populations using radiotracer-labeled anti- T and anti-B cell antibodies, or antibody fragments

Imaging the Immune Response

- MRI
- SPECT /PET

Assessing the interactions between radiotherapy and antitumour immunity

Clemens Grassberger@1*, Susannah G. Elisworth², Moses O. Wilks¹, Florence K. Keane¹ and Jay S. Loeffler³

HARVARD MEDICAL SCHOOL MASSACHLISETS RADBARDON ONCOLOGY

The Case for Immunotherapy-RT Modeling

Summary I

- Dynamic models of tumor development and therapy effect enable connection to serial imaging analyses
- Combining RT with targeted agents requires new approaches & extended models
 - Growth realistic growth models due to longer time frames
 - Resistance emergence of completely resistant sub-populations
- shifting aims is the purpose of the RT regimen either to
 - maximize cell kill
 OR
 - minimize resistance development (to EGFR/ALK/ROS inhibitor)
- Essential for their inclusion in stage III, raises interesting question/trade-off:
 is RT there to support the agent or the other way round?

HARVARD MEDICAL SCHOOL MASSACHUSETTS BABATON ONCOLOGY in Pro-

Summary II

- Modeling Immunotherapy + RT
 - Immune response imaging techniques (MRI, SPECT, PET)
- Systemic vs Regional-Interacting models
- Tumor seen as one compartment vs explicit treatment of different sites
 Informing different questions in stage III/IV
- emerging question in stage III disease:
 - Is the purpose of the (chemo-)RT regimen to
 - maximize cell kill ?
 - OR
 - maximize / modulate the immune response ?

111

10

HARVARD MEDICAL SCHOOL

Prevalence of	f Concurrent	Therapy 🚽	potential	for Targeted	Agents + R
---------------	--------------	-----------	-----------	--------------	------------

Patients treated with combined chemo-radiation

Site	number in '000 (% of total)	Percentage treated with chemotherapy and radiation	Targetable mutations
Breast	234 (14.1)	25%	HER2, mTor, CDK4/6
Lung	221 (13.3)	29%	EGFR, ALK, ROS, VEGF(R2), MET, PD-1
Colon	93(5.6)	40%**	VEGF(R2), EGFR, KIT/RAF
Bladder	74(4.5)	30%**	Possibly EGFR, FGFR3, mTOR, PIK3CA, RAS,
Non-HL	72(4.3)	12%	CD20/30, PI3K
Uterine corpus	55(3.3)	12%**	VEGF
Head and Neck	46(2.8)	30%*	EGFR, PI3K, Notch
Rectal	40(2.4)	12%	VEGF(R2), EGFR, KIT/RAF
Total	835 (50.4)	26%	

Introduction

- Optimization plays a large role in radiotherapy: delivery, fractionation, target dose, OAR tradeoffs
- Emerging role in design of drug regimen (example to follow)
- General aim: introduce clinically applicable models to help in trial design & patient-specific treatment adaptation

Overview over Clinical Studies

- Additive Effects:
 - Head and Neck: 7-12 Gy
 - Anal Cancer: 4-8 Gy Cervical Cancer: 0.5-8 Gy
- radiosensitization factors: 1.2-1.35 in pancreas & bladder

Table 3.

Source	Site	Effect type	Effect of chemotherapy	
Plataniotis and Dale (2008)	Cervix	Independent action	Equivalent to 0.4-8 Gy in 2 Gy fractions, depending on turner radiogeneitisity	
Kasibhatla et al (2007) and Fowler (2008)	Head and neck	Independent action	Equivalent to 8.8 Gy10 or 7.6 Gy in 2 Gy fractions	
Moraru er al (2014)	Pancreas	Sensitization only	Radiosensitization factor 1.18-1.35	
Plataniotis and Dale (2014)	Bladder	Independent action or sensitization	Equivalent to 36.3 Gy in 2 Gy fractions or radiosensensitization factor of 1.3	
Durante et al (2015)	Pancreas	Independent action	Equivalent to 94 Gy6.77	
Hartley et al (2010)	Head and neck	Independent action	Equivalent to 9.3 Gy ₁₀ for tumor and 6.4 Gy ₁₀ for mucosa	
Pettit et al (2013)	Head and neck	Independent action	Equivalent to 3-12.7 Gy10, depending on chemotherapy regimen	Grassberger &
Pettit et al (2013)	Anal	Independent action	Equivalent to 4.1 Gy $_{10}$ for 5-FU and 9.1 Gy $_{10}$ for MMC/5-FU	Paganetti, PMB 2016
	NEM HARVARD	MASSACHUS	ETTS DESTLAL	411
	MEDICAL	RADIATION	ONCOLOGY	

Overview over Clinical Studies

- Additive Effects:
 - Head and Neck: 7-12 Gy
 - Anal Cancer: 4-8 Gy Cervical Cancer: 0.5-8 Gy
- radiosensitization factors: 1.2-1.35 in pancreas & bladder
- Main Challenge: low "dimensionality" of clinical outcome data
- additive effect only makes fitting of complex models difficult

Overview over Clinical Studies

- Additive Effects:
 - Head and Neck: 7-12 Gy
 - Anal Cancer: 4-8 Gy
- Cervical Cancer: 0.5-8 Gy
- radiosensitization factors: 1.2-1.35 in pancreas & bladder
- Main Challenge: low "dimensionality" of clinical outcome data makes fitting of complex models difficult
- One solution: use the whole survival curve, or even patient-level data to inform models
- dynamic models of clonogenic growth

MEDICAL SCHOOL MASSACHUSETTS GENERAL HOSPITAL Radiation Onco

Concurrent vs Sequential CRT

- Idea: to combine radiation-only & chemo-only models \rightarrow derive in-vivo radiosensitization factor
- Difference between concurrent and sequential explained by shorter treatment time

dynamics of resistance

Modeling Resistance – Tumor Growth Trajectories

Rationale for Modeling

- Targeted agents currently only used in a stage IV setting
- Targetable mutations also exist in stage III disease
- Application: to find optimal induction lengths for stage III patients (patient-specific?)

Rationale for Modeling

- Targeted agents currently only used in a stage IV setting
- Targetable mutations also exist in stage III disease
- Application: to find optimal induction lengths for stage III patients (patient-specific?)
- Maintenance therapy

Immuno – RT modeling: local models

Types of Modeling Approaches

Modeling Therapy

Two typical methods to develop a mathematic model

Types of Modeling Approaches

- Two "axes" on which models can be distinguished:
 - General <-> Site-Specific

Types of Modeling Approaches

- Two "axes" on which models can be distinguished:
 - General <-> Site-Specific Phenomenological <-> Mechanistic
- Models parameterized using
 - in vitro data
 - clinical patient data
- Focus on clinical applicability
- ightarrow phenomenological models based on outcome data

MARVARD MEDICAL SCHOOL

