⁸⁹Zr-ImmunoPET: Harnessing Antibodies for Diagnostic and Theranostic Nuclear Imaging

Brian Zeglis, Ph.D.

Assistant Professor, Department of Chemistry, Hunter College Affiliate Assistant Member, Department of Radiology, Memorial Sloan Kettering Cancer Center Adjunct Assistant Professor, Department or Radiology, Weill Cornell Medical College

Disclosure

No relevant financial relationships with commercial interests.

<u>Brian M. Zeglis, Ph.D.</u> Hunter College Memorial Sloan Kettering Cancer Center

ImmunoPET: The Hallmarks

- Advantages:
 - Specificity
 - Affinity
 - Stability
 - Biochemical information
- Obstacles:
 - Immunogenicity
 - Extracellular targets
 - Slow pharmacokinetics

• Key: Matching radionuclidic t_{1/2} to pharmacokinetic t_{1/2}

Radioimmunoconjugates

Advantages and Disadvantages

- Advantages:
 Specificity
 - □ Affinity
 - □ Stability

Disadvantages:
 Immunogenicity
 Extracellular targets
 Imprecise Construction
 Slow pharmacokinetics

Wu, *et al.* J Nucl Med, 2009 Van Dongen, *et al.* Oncologist, 2007

ImmunoPET: Choosing an Isotope

1 H Half-Life Too Short (< 6 h)

Half-Life So-So (6-24 h)

Half-Life Just Right (24-96 h)

-5-5-	18-87	5	-S-S-	
	s-s s-s	8 ~ ~ s~ e		
		A ST TR		
			•	2 He

Hydrogen																		Helium
3 Li Lithium	4 Be Beryllium												5 B Boron	6 C Carbon	7 N Nitrogen	8 O _{Oxygen}	9 F Fluorine	10 Ne Neon
11 Na _{Sodium}	12 Mg Magnesium												13 Al Aluminum	14 Si Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	1 Ar Argon
19 K Potassium	20 Ca Calcium		21 Sc Scandium	22 Ti	23 V Vanadium	24 Cr	25 Mn Manganese	26 Fe	27 Co	28 Ni Nickel	29 Cu Copper	30 Zn _{Zinc}	31 Gallium	32 Ge Germanium	33 As Arsenic	34 Se _{Selenium}	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr Strontium		39 Y _{Yttrium}	40 Zr ^{Zirconium}	41 Nb _{Niobium}	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag _{Silver}	48 Cd _{Cadmium}	49 In Indium	50 Sn _{Tin}	51 Sb Antimony	52 Te Tellurium	53 I Iodine	54 Xe _{Xenon}
55 Cs _{Cesium}	56 Ba Barium	57-70 Actinides	71 Lu	72 Hf	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 Tl Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	89-103 Lanthanides	103 Lr Lawrencium	104 Rf Rutherfordium	105 Db Dubnium	106 Sg _{Seaborgium}	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Uut ^{Ununtrium}	114 Fl Flerovium	115 Uup ^{Ununpentium}	116 Lv	117 Uus ^{Ununseptium}	118 Uuo ^{Ununoctium}

Physical Properties of 89Zr

- ⁸⁹Zr decay properties
 - t_{1/2} = 78.41 (12) h
 - $\beta^+ = 22.3\%$, $E_{\max}(\beta^+) = 897 \text{ keV}$, $E_{\text{ave.}}(\beta^+) = 396.9 \text{ keV}$, $R_{\text{ave.}}(\beta^+) = 1.18 \text{ mm}$
- ⁸⁹Y target
 - 100% abundant & commercially available
- High ⁸⁹Y(p,n)⁸⁹Zr production yields on <15 MeV cyclotrons
 - 1.52 ± 0.11 mCi/µA·h
 - Typical 2 3 h bombardments yield 45 65 mCi
- High purity
 - >99.99% radionuclidic and radiochemical purity
 - [⁸⁹Zr]Zr-oxalate and [⁸⁹Zr]Zr-chloride readily accessible
- High specific-activity
 - 5.3 13.4 mCi/µg (470 1195 Ci/mmol)

The Production of ⁸⁹Zr

- Solid-phase purification
 - Hydroxamate resin (0.25 ± 0.08 mmol/g) gives >98% recovery of ⁸⁹Zr activity
 - >99.99% radionuclidic purity
 - [⁸⁹Zr]Zr-oxalate or [⁸⁹Zr]Zr-chloride

Solid ⁸⁹Y-foil 0.1 mm thick, 10° angle, 15 MeV, 15 µA

The Chemistry of ⁸⁹Zr

- Hard Metal
- Oxophilic
- Primarily a +4 cation in aqueous solution
- Effective ionic radius of Zr⁴⁺ cation: 0.84 Å

• Forms complexes with high coordination numbers

□ Typically eight-coordinate species

Coordination Chemistry of ⁸⁹Zr

- Uncomplexed ⁸⁹Zr⁴⁺ accumulates in the bone (osteophilic)
- ⁸⁹Zr⁴⁺ is a very 'hard', oxophilic cation
- Common chelators such as DOTA, NOTA, and DTPA do not work well
- Works well with the siderophore-derived chelator desferrioxamine (DFO)
 - O₆ coordination environment
 - Three hydroxamate groups = 3 anionic oxygens + 3 neutral oxygens
 - Two exogenous waters may also be involved in coordination

[89Zr]Zr-Oxalate

MIP image (24 h)

Bioconjugation of DFO

An Example From Our Lab: ⁸⁹Zr-ImmunoPET of Ovarian Cancer

Sai Sharma Ph.D. Kimberly Fung HC '14 GC '19

Ovarian Cancer

- 5th leading cause of cancer-related deaths in women
- 'Most **lethal** gynecologic malignancy'
- 21,290 new cases will be diagnosed and 14,180 women will die from cancer of the ovary in 2015'
- > 70% women diagnosed with OC are at 'advanced stage'
- Spread to lymph nodes is particularly hard to detect

Our Target: CA125

- Ovarian Tumor Associated Antigen
- High MW glycoprotein (~5 MDa)
- High diagnostic / prognostic value in recurrent EOC

Our Target: CA125

OVCAR3 CA125 - positive

SKOV3 CA125 - negative

PET Imaging of Ovarian Cancer

- Inject human ovarian cancer cells on the shoulder of mice
- Let the tumors grow for 3-4 weeks
- Inject the mice with ⁸⁹Zr-DFO-B43.13

Sharma et al. J Nucl. Med. 2016 (in press).

An Example from the Clinic: ImmunoPET of Pancreatic Cancer

Pancreatic Cancer, CA19.9, and 5B1

- Pancreatic cancer is the 4th leading cause of cancer-related deaths.
- Pancreatic cancer lacks effective treatment and imaging modalities.
- Carbohydrate antigen 19.9 (CA19.9) is a promising biomarker for pancreatic cancer
 - Supports selectin-dependent adhesion
 - Up to 200 copies/protein
 - Attached to as many as 50 proteins
 - Elevated in several types of cancer, including PDAC (~90%)

5B1 is a fully human antibody that specifically binds CA19.9

Imaging Pancreatic Cancer Targeting CA19.9 with hu5B1

Coronal PET images acquired with ⁸⁹Zr-DFO-5B1 in athymic nude mice bearing CA19.9-expressing BxPC3 PDAC xenografts.

Villegas, et al. J Nucl Med 2013.

PET Imaging with ⁸⁹Zr-DFO-5B1

PET/CT imaging study with MVT-2163 (89Zr-DFO-HuMab-5B1)

PET Imaging with ⁸⁹Zr-DFO-5B1

Liver Metastases

67-year-old female with metastatic pancreatic adenocarcinoma and rising CA 19-9 antigen levels of 2119 U/mL

Diagnostic CT

PET/CT image after injection of 47 mg MVT-5873 and 3 mg MVT-2163

What's Next?

Site-Specific Bioconjugation

What's Next?

New Chelators for ⁸⁹Zr⁴⁺

- A more robust ligand designed specifically for Zr⁴⁺ would demonstrate greater stability and, therefore, less *in vivo* release and bone uptake.
 - HOPO: Deri, et al. J. Med. Chem. 2014, 57, 4849
 - C5-C7: Guérard, F. et al. Chem. Eur. J. 2014, 20, 5584.
 - DFO*: Patra, M. et al. Chem. Commun. 2014, 50, 11523.
 - BFC1: Pandya, D. N. et. al Chem. Commun. 2015, 51, 2301.
 - FSC: Zhai, C. et al. *Mol. Pharm.* **2015**, *12*, 2142.

Conclusions

- Antibodies are an effective vector for the delivery of positron-emitting radionuclides to tumor tissue.
- The long serum half-life of immunoglobulins means that they must be radiolabeled with long-lived radionuclides such as ⁸⁹Zr.
- ⁸⁹Zr⁴⁺ is an osteophilic radiometal so it must be covalently attached to the antibody and stably coordinated with a chelator such as desferrioxamine (DFO)
- ⁸⁹Zr-labeled antibodies have shown immense potential for the nuclear imaging of ovarian and pancreatic cancer.

Acknowledgements

- The Zeglis Laboratory
- The Lewis Laboratory (MSKCC)
- Molecular Imaging and Therapy Service (MSKCC)
- Dr. Neeta Pandit-Taskar
- Dr. Mark Dunphy
- Dr. Jorge Carrasquillo
- Dr. Steven Larson
- Funding
- Geoffrey Beene Cancer Research Center Department of Energy
- National Institutes of Health
- MSKCC Experimental Therapeutics Center

