Novel Acquisition Methods in X-ray Computed Tomography

J. Webster Stayman Department of Biomedical Engineering web.stayman@jhu.edu

Johns Hopkins University Schools of Medicine and Engineering

Targets for Novel CT Data Acquisition

X-ray Source Spatial modulation Spectral modulation X-ray Detector Photon-counting Energy discrimination High-resolution systems System Geometry Non-criccular (non-helical) orbits

SparseCT Data Reconstruction				
Siemens ADMIRE 120 kVp 210 mAs 100% data	Siemens ADMIRE 120 kVp 21 mAs 100% data	SparseCT 120 kVp 210 mAs 10.4% data		
	R	10		
Koesters T, Knoll F, Sodickson A, Sodickson reconstruction for radiation dose reduction	D K and Otazo R (Feb 2017) SparseCT: intern SPIE Medical Imaging p 101320Q	rupted-beam acquisition and sparse		

_

