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Image acquisition and reconstruction

Object Sensor Domain Image
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UltraRRE Fetatiamitiogespace

acquisition and reconstruction
1. NMR inductive detection
2. modulated by magnetic gradient fields

Object Sensor Domain Image

“Signal”
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Fourier k-space
Fourier Transform Inverse Fourier Transform
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2D Cartesian MRI

acquisition and reconstruction

Object Sensor Domain Image
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Fourier Transform Inverse Fourier Transform
Non-Cartesian Sampling Gridding, Density Compensation
Parallel/Multichannel Rx Coil Compression, autocalibration,

nonlinear optimization

Undersampling Sparsifying transform,
CG optimization, backtracking line search




acquisition and reconstruction

Conventional

Reconstruction Chain Image

Fourier Transform nverse Fourier Transform

Non-Cartesian Sampling , Density Compensation

Parallel/Multichannel Rx

nonlinear optimization

Undersampling b
CG optimization,

Speech recognition before 2010:
hand-crafted expert feature extraction

Block scheme of Speech Recognition
utterance content
( \
Speech corpus. onal Parameterization — | Training Text corpus

Acoustic models (HMM) | | Language model |
Bigrams
N.grams
Morphology
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speech fealures phone probabilities  utterance content

Deep learning revolutionized speech recognition

Supervised learning:

M-

m Deep Recurrent )
' Remind me | have to eat at 5 pm
pormiovio s bl " Neural Network

Highly expressive architecture l
Large number of degrees of freedom

mind me | have a talkat 5 pm




Automated feature extraction:
Solving difficult problems

Previously reliant on expert feature engineering:
* Speech Recognition * Image Classification
* Natural Language Processing * Medical Image Segmentation
* Al Gaming (Chess, Go, ATARI) * Scene analysis (autonomous vehicles)

Enabled by a technological convergence:

* Algorithms/architectures (Deep+Convolutional Neural Networks)
* Accessibility to training data (Big Data)
* Advanced parallel computing hardware (Multi-GPU)

Perceptual Learning

Refinement of based on exposure to and on stimuli

Lt perceptual
Becision-making eemicg
gegrons including LIP/

is critical to robust performance in settings
Lu, Z-L., et al. Visual perceptual learning. Neurobiology of Learning and Memory 95, 145-151 (2011)

What animal is this?




Your brain learns from seeing many examples

Under-sampled
Low SNR

« Fully sampled
« High SNR

“Hallucination”

Data Acquisition Image Reconstruction
2
10 minutes

Perceptual Learning for MRI

Retinal sensor Optic nerve neural signaling Reconstructed image

Data-driven training

MRI sensor Time-domain k-space Reconstructed image
Detector + pulse sequence




Deep learning for image reconstruction

AUTOMAP: Automated Transform by Manifold Approximation LETTER  nature March2018

tonat
Reconstruction Chain Inaige reconstruction by demain-transform
manifokl learning

Data-driven supervised learning

Perceptual learning biologically-
inspired approach

> Recast image reconstruction as a

Deep learning for image reconstruction

AUTOMAP: Automated Transform by Manifold Approximation LFTTER  nature March 2018
Convencons

Recominuciion Chain image Inage recanstrsction by damain- transfor
manilold learmimg

AuUTOMAP
Roconstruction

-> Recast image reconstruction as a
« Reconstruction relationship emerges from raw sensor and image data
« Forward model is inverted by learning

Convolutional NN denoiser

CNN

Learned mapping

Noisy image Clean image

Mapping from noisy to clean aka noise training learned from pairs of examples

Images: Jaakko Lehtinen




Deep learning for image reconstruction

In contrast: we train on fro

Training

Recon.

Sensor domain Image domain

1. Identify sparsity in two domains
2. Learn toinvert encoding sparse manifolds

a la perceptual learning

Sparsity: natural separation of signal and noise

-> High dimensional data can be represented with fewer coefficients in a sparse domain

Sparsity: natural separation of signal and noise

-> High dimensional data can be represented with fewer coefficients in a sparse domain

Pixel space “Circle space”

(X0, Yo To)

- a sparse domain
for circles




Sparsity: natural separation of signal and noise
Noise can be anything... except sparse!

Possible images: 2128128

(4,933 digits!)

..we need all those coefficents!

Sparsity: natural separation of signal and noise

Noise is not sparse in any domain!

Fourier domain: Wavelet domain:

t sparse N
also not sparse no sparsity here

- High dimensional data can be represented with fewer coefficients in a sparse domain

Sparsity: natural separation of signal and noise

Natural images are special

Fourier domain: Wavelet domain:

Not sparse
L also not sparse - sparse

“Brain hallucinates image using learned sparse features”




Sparsity: natural separation of signal and noise

-> High dimensional data can be represented with fewer coefficients in a sparse domain

.

Fourier domain: Wavelet domain:

Not sparse
also not sparse -> sparse

* NN training can encourage efficient internal representation of learned mapping
- AUTOMAP transform operates between data-defined sparse domains
-> Image is hallucinated from the learned sparse convolutional feature maps

Deep learning for image reconstruction

AUTOMAP: Automated Transform by Manifold Approximation LFTTER  nature March 2018

Cor al
Reconsiruction Chain Image Inage recansiruetian by damaiin- transfor

manifeld learming

uToMAP
Roconstruction

-> Recast image reconstruction as a supervised learnin;
« Reconstruction relationship emerges from raw sensor and image data
« Training: conditions joint manifold for sparsity & learns to invert encoding

Neuromorphic approach: AUTOMAP

AUTOMAP: Automated Transform by Manifold Approximation

Mathematical transform




AUTOMAP feed-forward reconstruction

k-space

Reconstructed Image.

a

Dense Layer Activations

Convolutional Feature Maps

AUTOMAP: Automated Transform by Manifold Approximation

Mathematical transform

Neuromorphic approach: AUTOMAP

AUTOMAP: Automated Transform by Manifold Approximation

Fully connected layers:
universal function
approximators that can
represent any function on
compact set

Mathematical transform

Mo Footfreand Netuasks e
arira sppanai,

Apprievien by Saperssiiss o » Sogmsda Fascie
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Neuromorphic approach: AUTOMAP

AUTOMAP: Automated Transform by Manifold Approximation

SElCERER
BOZESNDE
- Sparsifying domain SSmESwz2
[+ Notassumed to be wavelet! [ Sl CRNE 4 1 R o
* Hallucinate final image mEINSESD
mESN=ESR
ENENaNAN
nns

milar to th

Mathematical transform

Training AUTOMAP

ImageNet sensor domain corrupted
images representation k-space

Multiplicative Noise
[Uniform 1% level]

PP S 0 VP —
ey Moo van Lo Dnmieg Crrin

TOMAP learns the inverse FT

Training Corpus: pairs of sensor and image domain data

Convolutional layers
form autoencoder

Reconstruction forced to
have

by L1 Norm
penalty on the feature
maps

Input to
AUTOMAP

Promotes manifold learning

- Low dim
representations are
stable & robust to
input corruption!

natural high-dim data
trates close’io’a
Widirensional manifold

= Image domain: 10,000 natural scene images from IMAGENET

= Sensor domain: Fourier Transform of each image

-

Sensor domain
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AUTOMAP deduces the reconstruction

k-space AUTOMAP
M-1N-1 —
flm,n) = Z Z F(x,y)e ™ (5)
m=0n=0

Trained on forward encoding

OMAP deduces the reconstruction

“Brain agnostic”

k-space AUTOMAP Reference (IFFT)

OMAP deduces the reconstruction
et “B scquisition and ré

0 200, Jedania Z L, N oo, Bnace . Fasan'”, Mt . Feaen' 2
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MRI spatial encoding schemes

P

Non-intuitive evolutionary optimized designs

Cable support system NASA STS

25% wei spacecraft antenna

/ z
7
=
&
¢

Original 60% weight

hitp://www.econo ology-quarterly/2166:

sa.gov/m/pub-
components- 2 e-produces-most-effi gov/m/pub-

(Hornby).pdf

AUTOMAP deduces the reconstruction
g

k-space
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Reconstruction shoot-out

in vivo nsor domain .
oy s ke <,
image representation

Additive noise

(finite SNR)

Ground Trut!

AUTOMARP: spiral k-space sampling
Sensor: Variable-density 10-interleave spiral k-space

« Generated by NUFFT on reference image (2x resolution)
- Gaussian noise added to 25 dB SNR

Reference

AUTOMAP: spiral k-space sampling

Sensor: Variable-density 10-interleave spiral k-space

« Generated by NUFFT on reference image (2x resolution
- Gaussian noise added to 25 dB SNR

Recon: (single-coil) with
regridding;

Reference Conventional

RMSE: 5.0%
SNR: 13.8
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TOMAP: spiral k-space sampling

Sensor: Variable-density 10-interleave spiral k-space
« Generated by NUFFT on reference image (2 resolution)
> Gaussian noise added to 25 dB SNR

Recon: (single-coil) with
regridding;

Reference AUTOMAP Conventional
RMSE: 1.7% RMSE: 5.
SNR: 42.7 SNR: 13.8

UTOMAP reconstructs all encodings

AUTOMAP  Conventional

AUTOMAP  Conventional s s

Fouter

Nisaligned
Fouier

AUTOMAP reconstructs noisy data

AUTOMAP  Conventional

Reference ~ AUTOMAP Conventional . [

spiral
Non-Cartesian|
Fourier

Radon
Projection

1. Low-dim internal representation of domain transfer function

2. Reconstruction hallucinated from sparse convolutional feature maps
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OMAP reconstructs (real) noisy ULF data

NA (Number of Averages)

AUTOMAP reconstructs (real) noisy ULF data

AUTOMAP Reconstruction gives 40% increase in SNR

Ultra-Low Field brain MRI Reconstruction:
AUTOMARP at 6.5mT
2019 ISMRM

Neha Kionjos, Bo Zhu and Matthew s. Rasen

Sorgham root image reconstruction: AUTOMAP vs. inverse FFT

AUTOMA

Reconstruct

Reconstruct

Overall SNR

Noise reduction (ST|

LF-MRI Rhizotron Sorghum ROOTS Team

NIST I uM\ A[NM @
artinas Mool o ¥ x ( RILIFE
E‘.«’?.. ek A RESEARCH
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gham root image reconstruction: AUTOMAP vs. inverse FFT

AUTOMAP
Reconstruction

IFFT
Reconstruction

Noise reduction (STD)

TOMAP hidden layer activation

« Trained on ImageNetimages
« Activation with k of brain

Sparsity of hidden layer activation

17



Sparsity of hidden layer activation

Sparsity of hidden layer activation

locality of network weights
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omain-specific training

b - values

AUTOMAP Reconstruction
DW trained model

AUTOMAP Reconstruction -
Convent IFFT

Diffusior ighted brain MRI

AUTOMAP with different training sets
2019 ISMRM

Mehy Keanies 8o Zhe, Matthew Christensen, lohe . Kirsch, and Matthew . Rosen

Domain-specific training:
from brain images to synthetic vasculature
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Conclusions

AUTOMAP: unified reconstruction framework
« Universal function approximation
« +Manifold learning with deep neural networks

=

AUTOMAP changes the game:
* Robust immunity to noise
« Faster scan times with less signal averaging (or dose)
* Rapid reconstruction (~1 ms): non-iterative feed-forward computation
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