

Automated feature extraction: Solving difficult problems

Previously reliant on expert feature engineering:

- Speech Recognition
 Natural Language Processing
 Al Gaming (Chess, Go, ATARI)

- Image Classification
 Medical Image Segmentation
 Scene analysis (autonomous vehicles)

Enabled by a technological convergence:

- Algorithms/architectures (Deep+Convolutional Neural Networks)
 Accessibility to training data (Big Data)
 Advanced parallel computing hardware (Multi-GPU)

Perceptual Learning

Refinement of perception based on exposure to and training on stimuli

→ Perceptual learning is critical to robust performance in low-SNR settings Lu, Z.-L., et al. Visual perceptual learning. *Neurobiology of Learning and Memory* 95, 145–151 (2011)

Data Acquisition 20 minutes 10 minutes

Deep learning for image reconstruction

LETTER nature March 2018
Image reconstruction by domain-transform manifold learning http://www.iuk/spact.com/~hearts.heart/~hearts.heart/~
Data-driven supervised learning

 Perceptual learning biologicallyinspired approach improves SNR of noisy data

Sparsity: natural separation of signal and noise Noise can be anything... except sparse!

Possible images: 2^{128 × 128} (4,933 digits!)

...we need all those coefficents!

NN training can encourage efficient internal representation of learned mapping
 → AUTOMAP transform operates between data-defined sparse domains
 → Image is hallucinated from the learned sparse convolutional feature maps

Neuromorphic approach: AUTOMAP

Fully connected layers: universal function approximators that can represent any function on compact set

Ithematical transform + sparse properties of natural image

Non-intuitive evolutionary optimized designs

Cable support system Original 60% weight 25% weight

w.economist.com/news/technology-quarterly/21662653-

NASA ST5 spacecraft antenna

https://ti.arc.nasa.gov/m/pubarchive/1244h/1244%20(Hornby).pdf

AUTOMAP: spiral k-space sampling

Sensor: Variable-density 10-interleave spiral k-space • Generated by NUFFT on reference image (2x resolution) → Gaussian noise added to 25 dB SNR

AUTOMAP: spiral k-space sampling

Sensor: Variable-density 10-interleave spiral 4-space • Generated by NUFFT on reference image (2x resolution) → Gaussian noise added to 25 dB SNR Recon: Conjugute gradient SENSE (single-coil) with NUFFT regridding; 30 iterations

Reference

RMSE: 5.0% SNR: 13.8

Sorgham	root ima	ge recons	struction: A	UTOMA	P vs. invei	rse FFT
AUTOMAP Reconstruction	\mathbf{k}	K	4	Ĩ	N.	
IFFT Reconstruction	X	X	4	Ĵ	\$	
Overall SNP enhancement	34.3 %	36.2 %	31.4 %	61.2%	37.6%	57.9 %
Overall Skill enhancement						

