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PET/CT: radon sinogramUltrasound: element-time spaceMRI: Fourier k-space

MRI acquisition and reconstruction
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1. NMR inductive detection

2. f and w modulated by magnetic gradient fields
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2D Cartesian MRI forward encoding model

Object Sensor Domain Image

Fourier Transform Inverse Fourier Transform

Fourier k-space

“Signal”

Object Image

MRI acquisition and reconstruction

Acquisition 
Encoding

Reconstruction

Gridding, Density CompensationNon-Cartesian Sampling

Parallel/Multichannel Rx Coil Compression, autocalibration,
nonlinear optimization 

Undersampling Sparsifying transform,
CG optimization, backtracking line search

Sensor Domain

Fourier Transform Inverse Fourier Transform
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MRI acquisition and reconstruction

Acquisition 
Encoding

Reconstruction

Gridding, Density CompensationNon-Cartesian Sampling

Parallel/Multichannel Rx Coil Compression, autocalibration,
nonlinear optimization 

Undersampling Sparsifying transform,
CG optimization, backtracking line search

Sensor DomainObject Image

Fourier Transform Inverse Fourier Transform

Speech recognition before 2010:
hand-crafted expert feature extraction

Expert-coded methods to represent vowels, consonants, phoneme transitions…

Supervised learning:

Deep Recurrent 
Neural Network

What is the weather in Istanbul right now?

The Red Sox are the best team ever.

Remind me I have a talk at 5 pm

How do you get to Times Square?

Remind me I have to eat at 5 pm

Highly expressive architecture
Large number of degrees of freedom

Backpropagation

Deep learning revolutionized speech recognition 

Training refines network weights w/o external theory of language!

Data defines its own internal representation
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Previously reliant on expert feature engineering:

• Speech Recognition
• Natural Language Processing
• AI Gaming (Chess, Go, ATARI)

• Image Classification
• Medical Image Segmentation
• Scene analysis (autonomous vehicles)

• Algorithms/architectures (Deep+Convolutional Neural Networks)
• Accessibility to training data (Big Data)
• Advanced parallel computing hardware (Multi-GPU)

Automated feature extraction:
Solving difficult problems

Enabled by a technological convergence:

Sasaki, Yuka, Jose E. Nanez, and Takeo Watanabe. "Advances in visual perceptual learning and plasticity." Nature Reviews Neuroscience 11.1 (2010): 53-

60.

Refinement of perception based on exposure to and training on stimuli

→ Perceptual learning is critical to robust performance in low-SNR settings
Lu, Z.-L., et al. Visual perceptual learning. Neurobiology of Learning and Memory 95, 145–151 (2011) 

Perceptual Learning

What animal is this?
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Your brain learns from seeing many examples

• Under-sampled
• Low SNR

• Fully sampled
• High SNR

“Hallucination”

Data Acquisition Image Reconstruction

MRI acquisition & reconstruction is different!

20 minutes

Data acquisition is slow!
(and slower at ULF!)

10 minutes

C –

“Hallucination”

Optic nerve neural signalingRetinal sensor

MRI sensor Time-domain k-space

Data-driven training

Reconstructed image

Reconstructed image

Perceptual Learning for MRI

Detector + pulse sequence
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→ Recast image reconstruction as a supervised learning task

AUTOMAP: Automated Transform by Manifold Approximation

Deep learning for image reconstruction

1. Data-driven supervised learning
replaces hand-crafted pipelines 

2. Perceptual learning biologically-
inspired approach improves SNR of 
noisy data

March 2018

→ Recast image reconstruction as a supervised learning task

AUTOMAP: Automated Transform by Manifold Approximation

Deep learning for image reconstruction

• Reconstruction relationship emerges from raw sensor and image data
• Forward model is inverted by learning pairs of examples

March 2018

Convolutional NN denoiser

Noisy image Clean image

Mapping from noisy to clean aka noise training learned from pairs of examples 

Images: Jaakko Lehtinen

Learned mapping

CNN
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Sensor domain Image domain

Deep learning for image reconstruction

1. Identify sparsity in two domains
2. Learn to invert encoding

In contrast: we train on clean pairs from forward encoding model

Noise immunity develops “naturally”: 
→ learned domain mapping between sparse manifolds

a la perceptual learning

Training

Recon.

Sparsity: natural separation of signal and noise

→ High dimensional data can be represented with fewer coefficients in a sparse domain

X

Y

Sparsity: natural separation of signal and noise

→ High dimensional data can be represented with fewer coefficients in a sparse domain

“Circle space”Pixel space

x0

y0

r0

X

Y

40.78952580374908 51.1495235618343

37.22685320621316 51.93986275469847

34.07602885701035 50.09878209446622

33.01546816114878 46.60700846385897

34.61012213226734 43.32457784168182

38.01053313828319 42.00001109471252

41.40533323756535 43.33889285309311

42.98614336734572 46.62801301061157

41.91088038360912 50.11528724600178

38.75232707470587 51.94307636727013

35.19301599201226 51.13773377332339

33.12895969932624 48.12825812171334

33.6596621659242 44.51776965490909

36.50242302622232 42.22954266263591

...
...

(x0, y0, r0)

→ a sparse domain
for circles

X Y
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Sparsity: natural separation of signal and noise

Noise can be anything…

Possible images: 2128×128

(4,933 digits!)

except sparse!

…we need all those coefficents!

Sparsity: natural separation of signal and noise

Not sparse Fourier domain:
also not sparse

Wavelet domain:
no sparsity here

Noise is not sparse in any domain! 

Not surprising given the data dimensionality:
2128×128  >> 1080 atoms in the universe

→ High dimensional data can be represented with fewer coefficients in a sparse domain

Sparsity: natural separation of signal and noise

Not sparse Fourier domain:
also not sparse

Wavelet domain:
→ sparse

“Brain hallucinates image using learned sparse features”

Natural images are special
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Sparsity: natural separation of signal and noise

→ High dimensional data can be represented with fewer coefficients in a sparse domain

• NN training can encourage efficient internal representation of learned mapping
→ AUTOMAP transform operates between data-defined sparse domains
→ Image is hallucinated from the learned sparse convolutional feature maps

Not sparse Fourier domain:
also not sparse

Wavelet domain:
→ sparse

→ Recast image reconstruction as a supervised learning task

AUTOMAP: Automated Transform by Manifold Approximation

Deep learning for image reconstruction

• Reconstruction relationship emerges from raw sensor and image data
• Training: conditions joint manifold for sparsity & learns to invert encoding

March 2018

AUTOMAP: Automated Transform by Manifold Approximation

Neuromorphic approach: AUTOMAP

Mathematical transform + sparse properties of natural images
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FC1

conv

k-space

FC2 FC3 C1  C2

conv deconv

k1

k2

k2

k1

k3

k3

Reconstructed Image

Dense Layer Activations Convolutional Feature Maps

AUTOMAP feed-forward reconstruction

AUTOMAP: Automated Transform by Manifold Approximation

Neuromorphic approach: AUTOMAP

Mathematical transform + sparse properties of natural images

AUTOMAP: Automated Transform by Manifold Approximation

Neuromorphic approach: AUTOMAP

Fully connected layers:
universal function 
approximators that can 
represent any function on 
compact set

Mathematical transform + sparse properties of natural images
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AUTOMAP: Automated Transform by Manifold Approximation

Neuromorphic approach: AUTOMAP

Convolutional layers
form autoencoder

Reconstruction forced to 
have sparse convolutional 
features by L1 Norm 
penalty on the feature 
maps

• Sparsifying domain learned! 
• Not assumed to be wavelet!
• Hallucinate final image

Very similar to the receptive fields 
of our visual cortex (Gabor filters)

Mathematical transform + sparse properties of natural images

ImageNet
images

sensor domain
representation

Multiplicative Noise
[Uniform 1% level]

corrupted
k-space

Input to
AUTOMAP

Training AUTOMAP

Promotes manifold learning

“Manifold assumption”:
natural high-dim data 
concentrates close to a 
low-dimensional manifold

→ Low dim 
representations are 
stable & robust to 
input corruption!

Loss: RMSE + L1 norm 
Minibatch: 32

Training Corpus: pairs of sensor and image domain data 

◼ Image domain: 10,000 natural scene images from IMAGENET

◼ Sensor domain: Fourier Transform of each image

AUTOMAP learns the inverse FT

Image domain

Sensor domain
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AUTOMAP Reference (IFFT)k-space

AUTOMAP deduces the reconstruction

Trained on forward encoding

AUTOMAP Reference (IFFT)k-space

Opens the space for learning arbitrary encoding schemes!

“Brain agnostic”

AUTOMAP deduces the reconstruction

AUTOMAP Reference (IFFT)k-space

Opens the space for learning arbitrary encoding schemes!

“Brain agnostic”

AUTOMAP deduces the reconstruction
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MRI spatial encoding schemes
Can we do better?

Non-intuitive evolutionary optimized designs

http://www.economist.com/news/technology-quarterly/21662653-
components-become-more-elegant-software-produces-most-efficient

https://ti.arc.nasa.gov/m/pub-
archive/1244h/1244%20(Hornby).pdf

Cable support system

Original 60% weight 25% weight

NASA ST5 
spacecraft antenna

Weird!

AUTOMAP Reference (IFFT)k-space

Opens the space for learning arbitrary encoding schemes!

“Brain agnostic”

AUTOMAP deduces the reconstruction
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Testing AUTOMAP

in vivo
image

sensor domain
representation

Additive noise
(finite SNR)

noisy k-space
AUTOMAP

Conventional

Ground Truth

Reconstruction shoot-out in the presence of noise

Reference

AUTOMAP: spiral k-space sampling

Sensor: Variable-density 10-interleave spiral k-space
• Generated by NUFFT on reference image (2x resolution) 
→ Gaussian noise added to 25 dB SNR

Spiral
Non-Cartesian

Fourier

Spiral
Non-Cartesian

Fourier

Reference Conventional

AUTOMAP: spiral k-space sampling

Sensor: Variable-density 10-interleave spiral k-space
• Generated by NUFFT on reference image (2x resolution) 
→ Gaussian noise added to 25 dB SNR
Recon: Conjugate-gradient SENSE (single-coil) with NUFFT
regridding; 30 iterations

Spiral
Non-Cartesian

Fourier

Spiral
Non-Cartesian

Fourier

RMSE: 5.0%
SNR: 13.8
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AUTOMAPReference Conventional

AUTOMAP: spiral k-space sampling

Sensor: Variable-density 10-interleave spiral k-space
• Generated by NUFFT on reference image (2x resolution) 
→ Gaussian noise added to 25 dB SNR
Recon: Conjugate-gradient SENSE (single-coil) with NUFFT
regridding; 30 iterations

Spiral
Non-Cartesian

Fourier

Spiral
Non-Cartesian

Fourier

RMSE: 1.7%
SNR: 42.7

RMSE: 5.0%
SNR: 13.8

Undersampled

Fourier

Radon

Projection

Encoding

Spiral

Non-Cartesian

Fourier

Misaligned

Fourier

AUTOMAPReference Conventional
AUTOMAP

Error
Conventional

Error

Compressed Sensing

MBIR

CG-SENSE (NUFFT)

IFFT
15.8% 0.9% 

2.4% 1.6% 

RMSE: 2.6% RMSE: 5.3% 

1.7% 5.0% 

a b c d e

f g h i j

k l m n o

p q r s t

13.842.7

43.559.3

SNR: 14.2SNR: 33.8

AUTOMAP reconstructs all encodings

AUTOMAP reconstructs very noisy data

SNR: 8.5SNR: 23.9 3.01% 6.62%

AUTOMAPReference Conventional
AUTOMAP

Error
Conventional

Error

a b c d

f g h i j

CG-SENSE (NUFFT)

MBIR

SNR: 4.5SNR: 13.2 RMSE: 5.5% RMSE: 14.6%

Spiral
Non-Cartesian

Fourier

Radon
Projection

1. Low-dim internal representation of domain transfer function

2. Reconstruction hallucinated from sparse convolutional feature maps

Robustness to noise:
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AUTOMAP reconstructs (real) noisy ULF data

NA=800NA=700NA=600NA=500NA=400NA=300NA=200NA=100NA=80NA=60NA=40

Acquisition Time (in minutes and seconds) 

1’20” 2’ 2’40” 3’20” 6’40” 9’55” 13’15” 16’32” 19’50” 23’10” 26’30”

AUTOMAP IM AGE RECONSTRUCTION  OF LOW  SNR D ATA ACQUISITION

INVERSE FAST FOURIER TRANSFORM  IM AGE RECONSTRUCTION  OF LOW  SNR D ATA ACQUISITION

Figure 2: AUTOMAP versus iFFT Reconstruction on ultra-low field data — 2D images of a phantom filled with water (sequence used = bSSFP, matrix size 

= 64×64 , TR = 31ms)were acquired at 6.5 mT. From left to right, different number of averages(NA) of the 2D slices are represented with their 

corresponding acquisition times; a) the upper panel shows AUTOMAP reconstruction and b) the lower upper compares the conventional Fourier 

Transform reconstruction method. The window level of both reconstructed images is the same on pairwise basis. 

B

A AUTOMAP 

Conventional

AUTOMAP reconstructs (real) noisy ULF data

AUTOMAP 

Conventional

2019 ISMRM

Sorgham root image reconstruction: AUTOMAP vs. inverse FFT

AUTOMAP 
Reconstruction 

IFFT
Reconstruction 

Overall SNR enhancement 34.3 % 36.2 % 31.4 % 61.2 % 37.6 % 57.9 %

Noise reduction (STD) 15% 26% 17% 37% 28% 39%
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Sorgham root image reconstruction: AUTOMAP vs. inverse FFT

AUTOMAP 
Reconstruction 

IFFT
Reconstruction 

Overall SNR enhancement 34.3 % 36.2 % 31.4 % 61.2 % 37.6 % 57.9 %

Noise reduction (STD) 15% 26% 17% 37% 28% 39%

AUTOMAP hidden layer activation

• Trained on ImageNet images
• Activation with k-space of brain

Superior immunity to noise and artifact: Sparse internal representation

Sparsity of hidden layer activation

SNR: 27

Gaussian noise

Cartesian FT
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Sparsity of hidden layer activation

SNR: 27SNR: 18

Gaussian noise

Cartesian FT

Sparsity of hidden layer activation

SNR: 27SNR: 18 SNR: 29

t-SNE: locality of network weights

* t-distributed stochastic neighbor embedding



19

Domain-specific training

SNR: 27SNR: 18 SNR: 29

High-b DWI at 1.5 T: AUTOMAP vs. inverse FFT

2019 ISMRM

Domain-specific training:
from brain images to synthetic vasculature

Software and data: http://vascusynth.cs.sfu.ca/
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Conclusions

AUTOMAP: unified reconstruction framework
• Universal function approximation
• + Manifold learning with deep neural networks
→ Automatically learn optimal reconstruction for arbitrary encodings
→ No imposed expert knowledge

AUTOMAP changes the game:
• Robust immunity to noise
• Faster scan times with less signal averaging (or dose)
• Rapid reconstruction (~1 ms): non-iterative feed-forward computation
→ Generalized reconstruction: brand new acquisition strategies
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