AAPM Annual Meeting 7/17/19

Contrast-Enhanced Digital Mammography

John Lewin, M.D.

The Women's Imaging Center Denver, Colorado

- History
- Technique
- Literature Review / Cases
- Clinical Status

Spoiler: CEDM is no longer new

• There are now (at least) two textbooks on CEM

Contrast-Enhanced Mammography

Marc Lobbes Maxine S. Jochelson Editors

Springer

Contrast-Enhanced Digital Mammography (CEDM)

> Jacopo Nori Maninderpal Kaur Editors

2 Springer

So Why CEDM?

Mammography

- Inexpensive, fast
- But...
 - Only about 75% sensitive
 - ~60% in dense breasts; 90% in fatty breasts

MRI

- Very high sensitivity
- **But...**
 - Expensive
 - Inconvenient long, noisy, claustrophobic

Question: What makes MRI so good at showing cancers?

Answer: The contrast agent

•Despite 3-D capability and excellent contrast sensitivity, non-contrast MRI has <u>not</u> been shown to work for cancer detection

To get the best of both mammography and MRI...

Contrast-Enhanced Digital Mammography (CEDM, aka CESM, aka CEM)

• Hypothesis

 By using intravenous iodinated contrast with digital mammography, occult cancers can be made visible

 Rationale: Breast cancers have been shown to enhance on MRI and CT

(see our History chapter in Lobbes textbook)

CEDM - Hurdles

• Contrast resolution of digital mammography is far lower than CT and MRI

• Breast compression inhibits blood flow

CEDM – Subtraction Techniques

• Temporal Subtraction:

post-contrast - pre-contrast

 Dual-Energy Subtraction: high-energy - k*low-energy

Example: Temporal Subtraction

Ref: Jong RA, et al. Radiology 2003;228:842-50

Courtesy M. Yaffe and R. Jong

Temporal Subtraction - Limitations

- Breast must be immobilized during contrast administration
 - Limited to one view of one breast
 - Bilateral exam requires 2nd injection
 - Only light compression can be used
 - Increases motion (misregistration), scatter

Dual-Energy Subtraction

- Images are acquired at two X-ray energies *after* contrast injection
 - Iodine absorbs high-energy beam better than low energy beam
 - Breast tissue absorbs low-energy beam better than highenergy beam
 - In practice, energies straddle the k-edge of iodine
 - Final image is weighted logarithmic subtraction (more or less)

Dual-Energy Subtraction

- Advantages
 - Image both breasts in multiple projections
 - Can image with full compression
 - Images obtained only seconds apart
 - Minimal misregistration
 - Improved morphology information
- Disadvantage
 - Weighted subtraction is imperfect (magnitude of effect depends on beam quality)

Dual-Energy k-edge Subtraction -Principle

33.2 Energy (keV)

Beam Shaping

 The difference in beam energy is achieved by changing the kVp (e.g., from 28 to 45) and by using different filtration (e.g., Rh or Ag vs Cu)

Example: Filtered Spectra on a Mo/Rh Mammo Unit

Example: Filtered Spectra on a W Mammo Unit (28 kVp W/Rh; 45 kVp W/Cu)

Dual Energy Subtraction (no contrast agent) Dual Energy Subtraction (with contrast agent)

Early Dual Energy Papers

– Lewin, et al (Radiology 2003)

- 26 subjects (13 cancers)
- All cancers enhanced
- Diekmann, et al (Invest Radiol 2005)
 - 25 lesions (14 cancers)
 - All cancers enhanced

DE CEDM vs Mammo

- Dromain, et al (*Eur Radiol* 2011, *Breast Cancer Res* 2012)
 - 120, 110 subjects (80, 148 cancers)
 - CEDM > mammo and mammo+U/S by ROC
- Cheung, et al. (*Eur Radiol* 2014)
 - 89 subjects (72 cancers)
 - CEDM > mammo in both sensitivity (92.7 vs 71.5) and specificity (67.9 vs 51.8)
- + Several more

Not surprising it is better than mammo. Is it as good as MRI?

Two-View Film Mammogram

(wire on excisional biopsy scar)

(cyst)

Sagittal Post-contrast MRI

... to Medial

Post-Contrast Dual-Energy Digital Subtraction Mammography

CEM vs MRI: Selected Literature

- Fallenberg, et al. Eur Radiol 2014;24:256-64.
 - Bilateral CEDM, MRI, mammo
 - 80 subjects with new CA at 1 site
 - CEDM > MRI sensitivity for index lesion (100% vs. 97%)
 - 80/80 vs 77/79

CEM vs MRI: Literature (cont.)

- Jochelson, *et al. Radiology* 2013; 266:743-51
 - Bilateral CEDM vs MRI
 - 52 subjects with new cancer
 - CEDM = MRI sensitivity for index lesion (96%)
 - 50/52
 - MRI > CEDM in detection rate for additional foci
 - 22/25 (88%) vs 14/25 (56%)
 - CEDM had fewer false positives than MRI
 - 2 vs 13

CEM vs MRI: Literature (cont.)

- Chou, et al. Eur J Radiol. 2015; 84:2501-8.
 - Mammo, DBT, CEM, CE Tomo, MRI
 - 81 cancers ; 144 benign lesions ; 3 readers
 - ROC analysis no difference between CEM, CET, MRI
 - all 3 better than unenhanced DM, DBT
 - Sensitivities: 93-98% for CEM; 86%-93% for MRI

CEM vs MRI: Literature (cont.)

- Łuczyńska E, et al. *Med Sci Monit* 2015; 21:1358-67.
- 102 patients with suspicious mammographic lesions
- 118 lesions identified
 - 81 malignant (37 benign)
 - 72 invasive / 9 in situ
- Sensitivity 100% for CEM vs 93% for MRI
- Accuracy 79% for CEM vs 73% for MRI – ROC using BIRADS: .83 vs .84

Selected Studies of CEDM vs MRI

Study	# of subjects/lesions	Primary Outcome	Result: CEDM vs MRI	Statistical Result
Fallenberg, et al.	80	Sensitivity	100% vs 98%	No difference
Jochelson, et al.	52	Sensitivity	96% vs 96%	No difference
Chou, et al.	185	Accuracy (AUC)	0.878 vs 0.897	No difference
Li L, et al .	48	Sensitivity	100% vs 100%	No difference
Luczynska et al, 2015	102/118	Sensitivity Accuracy	100% vs 93% 79% vs 73%	Statistically significant No difference

Fallenberg EM, Dromain C, Diekmann F, et al. *European radiology.* 2014;24(1):256-264.
Jochelson MS, Pinker K, Dershaw DD, et al. *European journal of radiology.* 2017;97:37-43.
Chou CP, Lewin JM, Chiang CL, et al. *European journal of radiology.* 2015;84(12):2501-2508
Li L, Roth R, Germaine P, et al. *Diagnostic and interventional imaging.* 2017;98(2):113-123.
Luczynska E, Heinze-Paluchowska S, Hendrick E, et al. *international medical journal of experimental and clinical research.* 2015;21:1358-1367.

Selected Papers – Diagnostic Use

- Work-up after abnormal screening
 - Houben, Lalji, Lobbes, et al (Maastricht) (Eur J Radiol 2016, 2017)
- Background Parenchymal Enhancement
 - Sogani, et al (Sloan Kettering) (*Radiol* 2017)
 - Savaridas, et al (Perth) (*Clin Radiol* 2017)
- Response to neoadjuvant chemotherapy
 - Barra, et al (Brasilia) (Radiol Bras 2017)
 - Iotti, et al (Reggio Emilia, Italy) (Breast Cancer Res 2017)
- Patient preference for CEM
 - Hobbs, et al (Perth) (J Med Imaging Radiat Oncol 2015)
 - Phillips, et al (Beth Israel Deaconess) (*Clin Imaging* 2017)

CEDM for Screening

- Potentially the most important application
 - Life-saving
 - Realize the cost-advantages
 - Probably not for average risk, but maybe
 - Risk of contrast and cost outweighed by benefit of higher sensitivity?
 - Well accepted by patients / fast

Only 2 Published Studies:

- 1. Sloan Kettering (USA):
 - 307 high risk patients
 - Each subject received both CEDM and MRI
 - Only 3 cancers: 2 invasive lobular CA's found by both CEDM and MRI and 1 DCIS found by MRI
 - Why the low yield? Many of the subjects had been screened by MRI the previous year

Jochelson M, et al. (12 authors total) EJR 2017;97: (37-43)

2. Tel Aviv University (Israel):

- 611 intermediate risk patients with dense breasts
- Each subject had mammo and CEDM
- 21 Cancers
 - Mammography found 11/21 (52%)
 - CEDM found 19/21 (91%) (2 interval cancers)
 - Specificity better for mammo: 91% vs 76%
 - PPV better for mammo: 16% vs 12%

Dual Energy CEDM Radiation Dose

- Taking dual energy images does not double the radiation dose
 - The high-energy image has less dose than the lowenergy image.
 - The LE beam is equivalent to a standard mammogram, but can be taken at a lower dose if only the subtraction image is important.
 - e.g, you have an unenhanced mammo for seeing calcs

Dual Energy CEDM Radiation Dose (cont.)

- Literature shows variability These papers both used the GE system:
 - Fallenberg, et al. European Radiology 2013 : Avg dose of CEDM ~ FFDM (1.72 vs 1.75 mGy)
 Jeukens CR, et al. Invest Radiol 2014 :

Avg dose of CEDM >FFDM by 81% (2.80 vs 1.55 mGy) Most of difference is in technique factors for the low energy image Practical Aspects: How to do a CEM Procedure

Step 0. Get the Equipment

- Can upgrade newer GE or Hologic device
 - Add copper filter to filter wheel
 - Software modification

- If machine has capability to do both 2D and tomo under the same compression, can add a "noncontrast" tomo sequence to each view
 - Note: The tomosynthesis is performed <u>after</u> the contrast is in, but is single-energy, so the contrast is not visible

1. Contrast Agent Administration

- Standard non-ionic CT contrast agent
 - 300 mgI/ml or higher (300, 350, 370)
 - IV injection (forearm or antecubital)
 - 1.5 ml/kg body weight
 - 2.5 3 ml/sec via power injector
- Patient is seated during injection
- Wait 2 minutes post injection before starting to position patient

Why wait 2 minutes? (why not 90 seconds like for MRI?)

- Extra 30 seconds is primarily the extra time needed for contrast administration
 - For example:
 - MRI 15 ml @ 2ml/sec = 8 s
 - CEDM 100 ml @ 3ml/sec = 33 s
 - so 25 extra seconds
- With CEDM it is better to err on the side of being a little late rather than too early
 - First compression affects all subsequent images of that breas
 - Start positioning at 2 minutes so that compression occurs at about 10-15 seconds later

2. Dual Energy 2D Imaging

- Devices set exposure parameters automatically
- Two exposures are made in rapid sequence:
 - 1. Low kV (normal mammogram)
 - 2. High kV (~45-49 kV, Cu filter)
- MLO, CC views are performed in any order
- Repeat as desired (can add add'l views)
 - Imaging window ends after ~6-12 minutes due to contrast redistribution

3. After Imaging

• Remove the IV. Patient is done.

- Device automatically performs the subtraction and other processing.
- Low-energy ("non-contrast") and subtracted images are available on the acquisition station and are sent to the review station.

Examples

Example cases from:
John Lewin, MD, Rose Medical Center, Denver
Chen-pin Chou, MD, Kaohsiung Veterans General Hospital, Taiwan

CEDM/CET Study Case 1: Unifocal IDCA

Case 1 -- Lessons...

- In some cases, CEDM shows spiculations and general morphology better than MRI
- In our study (Hologic prototype) no measurable improvement in morphology depiction with CE Tomo
- Non-con tomo is best for morphology, esp spiculations

Case 2: Multifocal IDCA w/ add'l lesions

Case 2 - CC view

Case 2: MRI

Lessons...

• Benign masses that light up on MRI also light up on CEDM (e.g. FAs, LNs)

• Sometimes you see things better on CEDM and other times on CET

CEDM/CET Case 3: Invasive Lobular CA

Same case -- CC Views

Case 3 -- Lessons...

- CEDM shows lesion extent similar to an MRI MIP
 - More helpful to surgical planning than was the 2D MRI slices (not shown)

CEDM/CET Case 4: multifocal IDCA

Screening mammo:

? architectural distortion"very low suspicion"

U/S: mass

Case 4: Mammograms

Case 4: MRI

Case 4: MRI

Morphology on LE tomosynthesis greatly increases the probability of malignancy

Case 4: Lessons...

 Low energy tomo images can add useful information on morphology – changing the assessment of the lesion

MRI

Fibroadenoma

MRI

Teaching Points

- Shape and margin are key for distinguishing benign from malignant enhancing lesions, but...
- When available, CEM kinetics appear to be analogous to MRI kinetics (as would be expected)
 - Kinetics more difficult to obtain in typical CEM exam than in MRI due to need for multiple separate acquisitions

CEDM – Clinical Implementation

- Two FDA and CE approved devices in clinical use worldwide
 - GE (2011)
 - Hologic (2012)
- Two additional companies with devices
 - Siemens, Philips
- Well over 100,000 CEDM examinations have been performed worldwide (no accurate count)

What is the FDA Approved Use?

• CEDM is approved as an adjunct to mammography and ultrasound when those studies are inconclusive

What is hindering adoption in the U.S.?

- 1. No billing code!
 - MRI is very profitable; CEDM is not.
- 2. Concerns about contrast reactions
- 3. Not "approved" for high-risk screening
 - Note that breast MRI is not labeled for that either
 - But MRI is covered by insurance and is accepted by the medical community

We need more screening data !

CEDM Guided Biopsy

- No major technical obstacles
- Combine existing upright stereo biopsy techniques with CEDM software/filter
- Companies have not felt the market is big enough to justify
- GE is supposedly close to announcing
- Current practice is to do MRI for CEDMonly findings

CEDM vs MRI

• CEDM

- Lower cost
- Easier on patient (noise, claustrophobia)
- Faster
- More specific (maybe)
- Single exam for high risk screening (shows calcs)
- MRI
 - Includes all of breast and chest wall
 - Signal to noise for enhancement very good / more sensitive
 - ? Gad safer than iodinated contrast
 - No radiation

Where will CEDM/CET fit in?

- Possible indications:
 - Cancer Staging
 - High Risk Screening
 - Moderate Risk Screening
- Must compete against MRI, nuc med, unenhanced tomo
 - Cheaper, easier and faster than MRI
 - Faster than Nucs no systemic radiation
 - Shows lesions that tomo misses

Opportunities for Physics Research

- Improved dual energy physics
 - Improved beam shaping
 - Novel anodes
 - Elements other than iodine (Zn, Gd)
 - Energy selective detectors
 - Hyperspectral imaging
 - Photon- counting

Opportunities for Physics Research

- Improved Image Processing
 - Iterative methods; A.I.–based methods?
 - Maximize lesion contrast
 - Decrease background contrast
 - Reduce inhomogeneity artifacts
 - Skin edge processing
 - Scatter reduction

Opportunities for Chemistry Research

• Even safer iodinated contrast agents

Summary

- CEDM has gone from research to clinical use
- Tons of literature (and 2 textbooks)
- Potential to reduce costs by decreasing MRIs
- Acceptance by breast surgeons, patients and rads
 - Contrast reactions have not been a factor, at least so far
- Still limited adoption, at least partly due to financial disincentives