Quantitative Dynamic Contrast Enhanced Breast Tomosynthesis: How Do We Get There?

ioannis.sechopoulos @radboudumc.nl

IoannisNL

Ioannis Sechopoulos Advanced X-ray Tomographic Imaging (AXTI) Lab Department of Radiology and Nuclear Medicine Radboud University Medical Center

rt Center for Screening (I BCB)

Disclosures

Research Agreements S C S

Siemens Healthineers Canon Medical Systems ScreenPoint

Speaking Agreement Siemens Healthineers

LET'S START FROM THE BEGINNING...

Digital Mammography Improvements

Radboudumc

Detection in some patient subgroups (DMIST)

Towards Tomographic Breast Imaging

2 D	2+ D	2.2 D	3 D
Standard Mammography	Stereoscopic Mammography	Digital Tomosynthesis	Dedicated Breast CT

29% of cancers missed by "overlying tissue"

Birdwell et al, Radiology 219, 192-202 (2001).

Radboudumc

DIGITAL BREAST TOMOSYNTHESIS

Benefits

Mammography++ System Workflow Interpretation Dose

...but with **some** discrimination of vertical position!

.

.

Chang et al, Scientific Reports, Vol. 7, 9746 (2017)

Radboudumc

CONTRAST-ENHANCED TOMO

Chou et al., Eur J Radiol. 84(12), 2501

Spatial(-temporal) characterization

Cellular density Vascular access Molecular profiles Genetic characteristics

OXT

Radboudumc

Can we make DBT quantitative?

7/17/2019

NXT

Radboudumc

well, I don't know how to...

NXT

Radboudumc

Can we make CE-DBT quantitative?

Calibration-based quantitative accuracy

Hill et al., IWDM Malmö. 645-653, 2016

ext

Radboudumc

Lesion diameter (mm)	[I] _{calib} (mg/ml)		
	0.5 mg/ml	1.0 mg/ml	1.5 mg/ml
9.5	(0.44, 0.69)	(1.01, 1.35)	(1.42, 1.86)
7.4	(0.32, 0.63)	(0.85, 1.20)	(1.15, 1.62)
5.0	(0.23, 0.66)	(0.73, 1.15)	(0.93, 1.49)
4.0	(0.28, 0.83)	(0.53, 1.12)	(0.98,1.72)

(95 % confidence intervals)

Hill et al., IWDM Malmö. 645-653, 2016

Radboudumc

ALL CONTRACTOR OF ALL CONTRACT	
ULA I	

Radboudumc

X-ray spectra Volume of support X-ray scatter Limited angle

NXI

OXT

Radboudumc

X-ray spectra Volume of support X-ray scatter Limited angle

Polychromatic forward model

$$\hat{y}_i(\vec{w}) = \sum_e b_{ie} \exp\left(-\sum_a \mu_a^{(e)} \sum_j l_{ij} w_{aj}\right)$$

Bustamonte et al., SIAMJ. Sci. Comput. 35(5), 2013.

Radboudumc

$$\underbrace{\overline{j_i(w)}}_e = \sum_e b_{ie} \exp\left(-\sum_a \mu_a^{(e)} \sum_j l_{ij} w_{aj}\right)$$

OIXT

Radboudumc

$$\hat{y}_{i}(\vec{w}) = \sum_{e} b_{ie} \exp\left(-\sum_{a} \mu_{a}^{(e)} \sum_{j} l_{ij} w_{aj}\right)$$

Spectral Reconstruction

Beam hardening included

eixt

Spectral Reconstruction

Material decomposition

(iodine map w/out subtraction)

OXT

Radboudumc

X-ray spectra Volume of support X-ray scatter Limited angle

NXT

Michielsen et al, CT Meeting 2018

Radboudumc

Agasthya et al, AAPM 2015 Rodriguez-Ruiz et al, PMB, 2017 Radboudumc

http://www.david-3d.com/?section=Gallery

Rodriguez-Ruiz et al, PMB, 2017

Radboudumc

Results

Michielsen et al, CT Meeting 2018

Results

Michielsen et al, CT Meeting 2018

Radboudumc

Quantitative Evaluation

Michielsen et al, CT Meeting 2018

X-ray spectra Volume of support **X-ray scatter** Limited angle

OXT

Rodriguez-Ruizet al, ECR 2019

Modified u-net

200 phantoms x 15 projections
= 3,000 scatter fraction images

Patient-base	ed split:	
Training	2400	
Validation	300	
Testing	300	
		Radboudumc

IXI

Mean absolute error

All images:	0.9%
Only area inside breast:	0.4%
Only breasts > 60 mm thick:	1.0%

OXT

Rodriguez-Ruizet al, ECR 2019

Radboudumc

X-ray spectra Volume of support X-ray scatter Limited angle

Radboudumc

 $\mathbf{2}^{nd}$ pass recon with lesion volume constrain

NXT

Radboudumc

...need to segment the (true) enhancing lesion

Michielsen et al, CT Meeting 2018

Radboudumc

First Pass Reconstruction

Michielsen et al, CT Meeting 2018

Feasibility Experiment

Lesion location: 50% central / 50% lateral

Michielsen et al, CT Meeting 2018

Radboudumc

Feasibility Experiment

Enhancement type: 50% rim / 50% homogeneous

Feasibility Experiment

4500 total cases simulated

Michielsen et al, CT Meeting 2018

Radboudume

OF COURSE...

OXT

Radboudumc

Erhard et al, Investigative Radiology, 2016

A lot of work left...

ext

3D cases Additional lesions Real patient images What level of accuracy is needed?

Radboudumc

Radboudumc

A lot of work left...

What biomarkers for tumor status/response/recurrence can we discover from QDCE-DBT?

