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Motivation for patient specific imaging in CT

Human body

It Is not static

Blood is always moving through arteries/veins and perfusing through soft
tissue

Heart is always moving

\\\\

Lungs are always moving
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Vessel diameter (cm)

Motivation for patient specific imaging in CT

Human body

It is not static
Blood is always moving through arteries/veins and perfusing through soft tissue
Rate of blood movement is a function of cardiac output, local impedance (i.e. is there a plaque?)

Opacification level is a function of blood pool volume
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Motivation for patient specific imaging in CT

Human body

It IS not static
Heart is always moving

Speed

70 0.156586

Millimeter / Second Miles per hour

divide the speed value by 447.04

This may not seem fast, but consider we commonly use a
RFOV of 25 cm and 512 voxels, that’s a voxel size of 0.48
mm. In 1 second @ 70 mm/s...we will see blurring

Radiology
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Cardiac Imaging

In-Plane Coronary Arterial Motion Velocity:
Measurement with Electron-Beam CT

Stephan Achenbach, Dieter Ropers, Jochen Holle, Gerd Muschiol, Werner G. Daniel, Werner Moshage
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Motivation for patient specific imaging in CT
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Displacement and Velocity of the Coronary Arteries: Cardiac and
Respiratory Motion

It IS not static
Heart is always moving

Guy Shechter,
The Laboratory of Cardiac Energetics, National Institutes of Health, (NHLB!), Department of Health
and Human Services (DHHS), Bethesda, MD 20892 USA, and the Department of Biomedical
Engineering, Johns Hopkir ) ) . i
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Motion varies a lot
by location
within/on the heart

PA displacement (mm)
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Fig. 2. © @
Displacement of the RCA origin during a tidal breathing cycle. The plots show individual
results for four patients (thin lines) and the mean displacement (thick line). One-dimensional
displacements are with respect to the patient's (a) left-right. (b) inferior-superior. and (c)

Fig. 3.
Velocity of the left coronary tree during the cardiac contraction. The plot shows individual

posterior-anterior axes. Positive displacements are toward the left, inferior. and posterior. results for seven patients (thin lines) and the mean velocity (thick line). Velocities are plotted
respectively. Since end-expiration was the reference state, the shape of the 3-D magnitude at (a) the LM ostium, (b) the LM bifurcation. (¢) a point on the LAD 5 cm from the LM ostium,
displacement curve (d) has a minimum at end-expiration (p = 0). and a maximum near end- and (d) a point on the LCx 5 cm from the LM ostium.

inspiration (p = +1).
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Motivation for patient specific imaging in CT

Human body
It is not static

Lungs are always moving...even during breath holds!
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6 8 12
. 3. (2) Durine inhalati .
Figure (a) During inhalation time (seconds)

Figure 7.54 Example of a chest wall motion under “breath-hold” condition.

nd anterior.
n refe

e 5,
with permission from Lippincott Williams, and Wilkins.]

AAPM Report 91 “The “Computed
management of respiratory Tomography”
motion in Radiation Oncology” by Hsieh

chest wall location

10 15 20

time (seconds)

Figure 7.53 Example of a respiratory motion curve measured at the chest wall under
“normal” breathing condition.
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Table 2. Lung tumor-motion data. The mean ran

for each cohor
Observer

Barnes™: Lower lobe
Middle, upper lobe
Chen et al ™
Ekberg et al.*
Engelsman et al.™:
Middlefupper lobe
Lower lobe

Middle lobe
Lower lobe
Grills et al.™
Hanley et al.”
Murphy et al.™’
ower lobe
Middle lobe
Upper lobe

Seppenwoolde et al.”

Shimizu e

Stevens et al.™

terior—posterior; LR: left-right;

and the (minimum-maximum) ranges in millimeters

subjects. The motion is in three dimensions (S, AP, LR).

(0=50)
3.9(0=12) 2.4 (0=5)

(2=6) ==
9.4 (5-22)
1 (=5}
0
1 (04
(0100
5(0-13)
T(2-15) -
9.5 (4.5-16.4) 6.1(2.5-9.8)
7.2(4.3-10.2) 43(1.9-7.5)

2.8(1.2-5

SI: superior-inferior.

2.4(0-5)

7.3 (3-12)
1{0-3)
9{0-16)
10.5 (0=13)
(0-6)
L{0-1)
6.0(29-98)
43(1.5-7.1)
3401353
1.5 (0-3)
(04

Pancreas

Liver

Kidney

Diaphragm

74
Suramo et al.
Bryan et al.”

et al.*

Suramo et al.™
Davies et al ™
Suramo et al.™
Davies et al."™®
Wade™
Korin et al.™

Davies et :

Giraud &

Ford et al.™

Shallow
20 (10-30)
20 (0-35)
I+/-5
14
25 (10-40)
10 (5-17)
19 {1040}
11 (5-16)
17
13
12 (7-28)
I+/-5

20(13-31)

Deep

43 (20-80)

J-80)
37(21=5T)

40 (20=70)

101

\\\\

AAPM Report 91 “The
management of respiratory
motion in Radiation Oncology”
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Heart Rate based Adaption

CCTA clinical reality

Patients will present with a wide range of heart rates

There exists and optimal time post contraction which varies as function of
HR = we define image time using a relative time post R peak or an
absolute time post R peak

rel delay rel delay

\\\\

Relative delay
(in % of the R-R interval)

Absolute delay
{in ms)

https://clinicalgate.com/physics-of-cardiac-computed-
tomography/
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Heart Rate based Adaption
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Optimal imag

e reconstruction intervals for non-invasive
coronary angiogr

raphy with 64-slice CT
Authors Authors and affiliations
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Borut Marincek, Philipp A. Kaufmann, Hatem Alkadhi [~

Cardiac So7 i [ all patiants {n = 80)
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Defining the mid-diastolic imaging period for cardiac CT — lessons from
tissue Doppler echocardiography

James M Otton, 12 Justin Phan,? Michael F:—:er'l:—:eIn:—-'g,'__'1-E Chung-yao Yu,1 Neville Sammel,! and Jane M
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This article has been cited by other articles in PMC.
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Heart Rate based Adaption
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Heart Rate based Adaption

80%

Mid-diastole: ~70% - 80% -

60%

Mid-diastole: ~ 40% - 55% -

40%

Low Heart Rate

70% - 80% 40% - 55% * 70% - 80% 40% - 55%




Lower Upper Peak 1 Peak 2
Limit Limit

30 50 75

51 60

61 65 70-80

66 70 70- 80

71 85 70- 80 40 - 55

86 100 40 - 55

101 200 40 - 60

Auto Gating Configuration

Profile: | & GE CCTA v |

Variable Beat to Beat Threshold | f

an i1

. [
Profile Name: |

Irregular Threshold | 2

B1

Highly Irregular Threshold |

G

4

Average Heart Rate (BPM)

71

200
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aowoy 1 00%
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250 ?DUms 100% SSF 225-500ms, 100%, SSF 200- 450ms 100% S5F 200 450ms 100% SSF 200-400ms, 100% SSF 175- S?Sms 100% SSF
24 m.- 4 %, 1 o 10 10 100% 10
g% b, 20% 5-05%, 200 , 20% 20% 5-05%, 20% 5-06%, 20%
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CCTA clinical reality

Patients will present with heart rate variability
patients with irregular HRs (afib), or with PVCs

Now we need to talk about data collection.

Stable HR has HR variation ~ 5 bpm, variable >5 bpm

Image from 128-slice Dual Source CT: How Does it Work and
What Can it Do? By Bruesewitz et al. Mayo Clinic 2010 RSNA

Heart Rate based Adaption

Retrospectively gated spiral
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Retrospectively gated spiral

Heart Rate based Adaption

Slow pitch helical/spiral mode Heart rate range | Gantry spesd
All vendors will just scan faster (i.e. higher pitch) EEXYL. 0.4 sec
when the heart rate is higher, if irregular beats 43 to 49 BPM 0.4 sec

are detected you would use a lower pitch 200 59 BFM 0.4 sec

60 to 69 BPM 0.4 sec

Example table of scan
pitches as a function of HR

“Step and shoot” axial/sequential mode
All vendors will just widen the time the x-rays are
on for a given bed position or collect multiple
spins one location if an irregular beat is detected

\\\\

Wide axial/sequential mode
Your detector can cover the entire heart, so you
sit over the heart with ECG trace on scan when
you predict your target phase will be
Scan for a longer time when the HR is high or you
anticipate an irregular beat

High pitch method “Flash mode”
Accelerate the table to a fast stopped
and cover the entire heart in a single
beat using a helical/spiral scan mode

Image from 128-slice Dual Source CT: How Does it Work and
What Can it Do? By Bruesewitz et al. Mayo Clinic 2010 RSNA
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Dual Source Healthineers "’

cCTA Imaging Guidelines

@ o’
[ -
Flash / Turbo Flash Mode Adaptive Car.dlo Sequence Retrospective ECG Gating o
(Prospective Gating) '

Flash: <65bpm

Heart Rate ER Any Heart Rate Any Heart Rate .

HR Stability Stable At high HR’s need to be stable Any Wave Form ' ‘

Contrast Amount Physicians discretion Scan time X injection rate plus 10 cc’s  Scan time x injection rate plus 10 cc’s ‘
Injection Rate 5 to 6 ml/s (faster is better) 5 to 6 ml/s (faster is better) 5 to 6 ml/s (faster is better)

Rotation Time Flash/Drive: 0.28, Force: 0.25 Flash/Drive: 0.28, Force: 0.25 Flash/Drive: 0.28, Force: 0.25
CARE kV ON ON ON .
Quality ref mAs Use Default Use Default Use Default
CARE Dose 4D ON ON ON '
Iterative Reconstruction ON ON ON

Depends on ECG pulsing range, (4%

Patient Dose Less than 1 mSv (100kV) Depends on ECG pulsing range il close availlble)
. . . Lar Atrial Fibrilation, very difficult cases,
Rule out CAD Routine with HR variability ECG|editing capability ®
Cardiac Function N/A Yes Yes )
Beta Blockers Physicians discretion Physicians discretion Physicians discretion
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Heart Rate based Adaption

Limitations of the gated Flash mode:

The heart rate must be regular. To scan using a high pitch, the table
requires about 1 sec to be accelerated. The scanner must accurately
predict the timing of future R-waves in order to synchronize the x- —
ray-on time with the diastolic phase. -~
Limitations with wide axial scanners and prospective scanning

Dose reduction potential is reduced
Need to widen gating window
Need to “double scan” if a messed up beat is detected
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Heart Rate based Adaption

So in summary
There exist multiple modes for cardiac scanning
There are optimal modes for different heart rates
There are optimal modes for different degrees of HR irregularities
There are different target gating windows for different heart rates
There are different strategies for dealing with HR irregularities

Current state of the art in cardiac scanning will have the scanner
picking the mode and target window for the operator

Honestly, the peer reviewed literature is not the place to
understand state of the art in cardiac scanning, get your apps
person to send your vendors whitepapers and user manuals for
cardiac mode.

\\\\
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Human body

It varies in size
Region to region
Angularly
Patient to patient
As a function of position

Motivation for patient specific imaging in CT
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Motivation for patient specific imaging in CT
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46 cm

Left is non log, right is log plot of detector signal as a function of soft
tissue thickness

10" =

signal change

™
=
=)

Multiple orders of magnitude
changes will occur in detector signal
due to body region size changes!

Relative Detector Signal
=

Relative Detector Signal

e s s — 10 3L |
150 200 250 300 350 400 150

. : 200 250 300 350 400
Soft Tissue Thickness (mm) Soft Tissue Thickness (mm) 7



Motivation for patient specific imaging in CT
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Motivation for patient specific imaging in CT

Human body

It varies in size
Angularly

projection through lateral direction longer than AP/PA for all regions except the head

D

IMAGING PHYSICS

L
—
]
—
=
L2
—
2
[0}

pediatric cases.

Mean ellipticity
Data set ratio (LAT/AP)

Adult abdomen pelvis 1.48
Adult chest 1.60
Adult shoulder” 2.28
Adult thorax' 1.51
VidigrauiEanL aneiar (i) Adult abdomen only® 1.38
Pediatric abdomen pelvis 1.53

Adult head 0.85

ised: 4 August 2017 Aco d: 2

2017

Christiane 5. Burton! | Timothy P. Szczykutowicz?

Std. Dev.
0.22
0.23
0.22
0.21
0.20
0.30
0.08

TasLe 2 Elliptical ratio (LAT/AP) calculation for patients of routine
adult (abdomen and pelvis), adult chest (fsubset of adult chest), and

Min—Max
1.20-1.94
1.21-2.07
1.08-3.34
1.09-1.98
1.16-1.73
1.07-1.75
0.83-0.87

WILEY

Evaluation of AAPM Reports 204 and 220: Estimation of
effective diameter, water-equivalent diameter, and ellipticity
ratios for chest, abdomen, pelvis, and head CT scans

vide data for the future

»-scale confirmation of the

ogate data for

yorts, and a

erent body regions.

sur analysis including data
| pediatrics. We calculated
:d in AAPM Reports 204/
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Human body

It varies in size
Patient to patient

newborn to bariatric adult

L

N
(8)]

N
o

40
Age (years)

Motivation for patient specific imaging in CT

6 m.o.
Qe
Gty

Kids have big heads... that is why they
are cute and why we treat them as
adults after they turn 7
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Human body

It varies in size

Patient to patient
newborn to bariatric adult

2 months old

10 cm

*its younger me ©

Extremely fit 27 year old*

Motivation for patient specific imaging in CT

“white out” bariatric patient

\\\\
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Motivation for patient specific imaging in CT

Human body

— |t varies in size

© As a function of position

~ prone versus supine, with respiratory state diaphragm/liver move multiple cm which
changes attenuation

\\\\

Same patient, three different positionings and three
different attenuation distributions
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Patient Specific Fluence Modulation

State of the art mA modulation

Adjustment of tube output as a function of z axis position, or both as a function of z position
and gantry angle

Can reduce dose up to 60% in some cases

c
=]
=

©

3

£

[
k=]
<

-500 -700 -900 -1100
Table Position

Phantom Ellipticity ratio

Phantom Size

mA modulation can handle
size and ellipticity changes
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Patient Specific Fluence Modulation

Current state of the art in mA modulation is organ dose modulation
Reduces mA when the tube is directly irradiating a radio-sensitive organ

. ~ 0 A 1
Typically, ~¥30% dose reduction possible Current state of the art, organ

Old school. no mA modulation Previous state of the .art, angular sparing plus angular and z mA
mA modulation modulation
Constant mA Lower mA Reduced mA

\\\\

Higher mA Increased mA

Patient Specific Fluence ModulationDixon, M. T., Loader, R. J., Stevens, G. C., & Rowles, N. P. (2016). An evaluation of organ dose modulation on a GE optima CT660-computed
tomography scanner. Journal of applied clinical medical physics, 17(3), 380-391.

Gandhi, D., Crotty, D. J., Stevens, G. M., & Schmidt, T. G. (2015). Phantom study to evaluate the dose and image quality effects of a computed tomography organ-based tube current
modulation technique. Medical physics, 42(11), 6572-6578.

Lambert, J. W., & Gould, R. G. (2016). Evaluation of a net dose-reducing organ-based tube current modulation technique: comparison with standard dose and bismuth-shielded
acquisitions. American Journal of Roentgenology, 206(6), 1233-1240.

Fu, W., Sturgeon, G. M., Agasthya, G., Segars, W. P., Kapadia, A. J., & Samei, E. (2017, March). Estimation of breast dose reduction potential for organ-based tube current modulated CT
with wide dose reduction arc. In Medical Imaging 2017: Physics of Medical Imaging (Vol. 10132, p. 1013246). International Society for Optics and Photonics.
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That was mA modulation, what about kV?
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Optimal Beam Energy Selection in CT

Key references for understanding the optimal beam energy in

CT Application- and patient size-dependent optimization of x-ray spectra
for CT
Willi A. Kalender,”® Paul Deak,” Markus Kellermeier,® Marcel van Straten,

Sabrina V. Vollmar®
Institute of Medical Physics, University Erlangen-Niirnberg, Henkestr. 91 91052 Erlangen, Germany

a),c)

and

(Received 21 August 2008; revised 20 November 20 accepted for publication 6 January 2009;

optimization has g

since the begimung ot (_T. It is rhc |)l1l|)(_1.\e uf this study to ;‘111;'11}-'25. in a rigorous manner, the
energies at which the patient dose nec / to provide a given contrast-to-noise ratio (CNR) for
various diagnostic tasks can be minimized. The authors used cylindrical water phantoms and qua-
stanthropomorphic phantoms of the thorax and the abdomen with inserts of 13 mm diameter

Automatic selection of tube potential for radiation dose reduction
in CT: A general strategy

Lifeng Yu,® Hua Li, Joel G. Fleicher, and Cynthia H. McCollough

Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905

dependent on patient size and diagnostic task. The purpose ¢

strategy that allows for automatic tube potential selec
diagnostic task.

Methods: The autl 'Opose a gene that allows ymatic adaptation of the tube
potential as a function of patient size and diagnostic task, using a novel index of image quality,
“lodine contrast to noise ratio with a noise constraint (ICNR_NC).” to characterize the different

\\\\



Optimal Beam Energy Selection in CT

——460 mm x 300 mm sim.
= =360 mm x 200 mm sim.
+ 360 mm x 200 mm meas.

460 mm x 300 mm meas.

tube voltage (kV) tube voltage (kV)

Raising kV
Lower kV means
means lower better i

. etter image
CEE— noise for the . tg
[ ‘ contras / *
| - . _@_ | - . y _ﬁ__
N S same dose e

Density difference was lodine difference was difference

difference between 10 HU of between lodine rod and
soft tissue like material background

Medical Physics, Vol. 36, No. 3, March 2009
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Optimal Beam Energy Selection in CT

\\\\

https://www.edu-quip.co.uk/prod/27573/matrix-springer-3-way-see-saw
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mA AEC SUREExposure 3D smartmA DoseRight CAREDose 4D

kV AEC SURE kV kV Assist {}** CARE kV
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Patient Specific Fluence Modulation

References for this new type of CT beam fluence modulation

Stanford group

Working prototype
Hsieh, S. S., Peng, M. V., May, C. A,, Shunhavanich, P., Fleischmann, D., & Pelc, N. J. (2016). A prototype piecewise-linear dynamic
attenuator. Physics in Medicine & Biology, 61(13), 4974.

Fluence control models
Hsieh, S. S., & Pelc, N. J. (2014, March). Algorithms for optimizing CT fluence control. In Medical Imaging 2014: Physics of Medical

Imaging (Vol. 9033, p. 90330M). International Society for Optics and Photonics.
Hokpins group

Mathews, A. J., Gang, G., Levinson, R., Zbijewski, W., Kawamoto, S., Siewerdsen, J. H., & Stayman, J. W. (2017, March).
Experimental evaluation of dual multiple aperture devices for fluence field modulated x-ray computed tomography. In Medical
Imaging 2017: Physics of Medical Imaging (Vol. 10132, p. 1013220). International Society for Optics and Photonics.

UW-Madison group

Implemented on a clinical MVCT scanner
Szczykutowicz, T. P., Hermus, J., Geurts, M., & Smilowitz, J. (2015). Realization of fluence field modulated CT on a clinical TomoTherapy
megavoltage CT system. Physics in Medicine & Biology, 60(18), 7245.

Prototype

Szczykutowicz, T. P., & Mistretta, C. A. (2014). Experimental realization of fluence field modulated CT using digital beam
attenuation. Physics in Medicine & Biology, 59(5), 1305.

Toronto group

Bartolac, S., & Jaffray, D. (2013). Compensator models for fluence field modulated computed tomography. Medical
physics, 40(12), 1219009.
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Bowtie filter works perfectly when Patient Specific Fluence Modulation

Patient object is homogeneous and cylindrical

Patient is perfectly centered on isocenter
Low uniformity High uniformity

Advantages

Decrease dose and scatter by ~50%

Increase noise uniformity
Homogeneous, not centered Not homogeneous, not centered
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Patient Specific Fluence Modulation
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Patient Specific Fluence Modulation
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Side view
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Patient Specific Fluence Modulation

View along fan beam
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Putting a bunch of
wedges together
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Patient Specific Fluence Modulation

Hopkins group- noise uniformity better with FFMCT relative to static
bOWtie i Variance Maps 4
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Patient Specific Fluence Modulation

“full” dose “full” dose 2 times higher dose

3.6 times higher dose
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DBA
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Stanford group (Hsieh and Pelc) have looked at how FFMCT
can help with photon counting CT via reducing dynamic range

needs of detector

original DICOM image
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Patient Specific Fluence Modulation

What about for VOI imaging?
Need to predefine a SNR “prescription” for the image

Then the required wedge positions must be calculated
Our first implementation

Max signal (minimum wedge thickness) to where ROl intersects wedgelet,
minimum signal (maximum wedge thickness) otherwise
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X-ray detector

X-ray detector
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Patient Specific Fluence Modulation

Clinicians often do not need good image quality everywhere!
Use FFMCT to provide region specific SNR enhancement/suppression

FEFMCT implemented on a clinical
MVCT scanner

ning

gantry ’

o i . . . ———— e
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Tomotherapy scanners already have a set of
beam modulators, so we used them to do

FFMCT! Scan focused on “VOI 4”
is shown here
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Toronto group looked
at VOI imaging using
different types of
fluence modulation
devices

MEDICAL PHYSICS
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B Full Access
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Patient Specific Fluence Modulation

FEMCT can be thought of as a way to actually weight data
during the collection process, in stead of post acquisition
during reconstruction like one can do with noise weighting
schemes in an iterative/non-linear reconstruction algorithm (D
term below weights data based on its signal strength)
FFMCT would allow one to increase signal levels for highly
attenuating rays OR

FFMCT would allow one to give up on highly attenuating rays and
give them little to no dose
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Thanks!

Feel free to contact me at
tszczykutowicz@uwhealth.org
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