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Overview

* What? Why?

* Examples
« Digital Breast Tomosynthesis reconstruction
* Cone Beam CT reconstruction
* MRI reconstruction

Our rationales for deep learning based
reconstruction

« Speed (neural networks have fast inference)
* Real time adaptive MR-guided radiotherapy
* Lower scan time
* Faster inference (reconstruction)
« Ability to learn a data manifold
* Dosimetry
+ Digital Breast Tomosynthesis
+ Cone-beam CT for prefraction adaptation




Reconstruction is an inverse problem
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Reconstruction is an inverse problem

y =Ax +n
Goal: find B such that x = By

We will use a neural network for this.
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Deep Learning and Reconstruction

* Several approaches can be envisioned
« Standard reconstruction algorithm + deep learning
filtering
* Directly from measured data to output
* Model-based, combining learning with model knowledge

Deep Learning and Reconstruction

* Several approaches can be envisioned
« Standard reconstruction algorithm + deep learning
filtering
* Directly from measured data to output
* Model-based, combining learning with model knowledge

Learned postprocessing
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Learned postprocessing
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Fully learned approach (Automap)

Fully learned approach (Automap)
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Breast Dosimetry
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Digital Breast Tomosynthesis (DBT)
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B

Reconstruction
algorithm
Lesions of —
Interest__

Detector This information is used to

reconstruct the volume

Courtesy of Dr. Ritse Mann

Digital Breast Tomosynthesis (DBT)
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Most deep learning reconstruction
methods are supervised

X ~ By

Most deep learning reconstruction
methods are supervised

X = By

Most deep learning reconstruction
methods are supervised

X = By
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Most deep learning reconstruction
methods are supervised

By

So how to get the ground truth if this is
what we have ?
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Sechopoulos et al, Medical Physics, 2012, 39(8), 5050-5059
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Digital Breast Tomosynthesis (DBT)

One conclusion: fibroglandular
distribution matters for dosimetry.

Learned primal dual (Adler et al. 2018)
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Average Glandular Dose

Amount of energy deposited by
x-rays in glandular tissue

Amount of glandular tissue

DBT reconstruction for dosimetry
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Cone-beam CT reconstruction
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Goal
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Ground truth

& The ASTRA Toolbox
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Goal for reconstruction in adaptive
radiotherapy

* Proper soft-tissue contrast to target malignant tissue
« Calibrated units for radiotherapy dose calculations
* Needs to scale to clinically relevant sizes, and have fast inference

This would enable day-by-day adaptive
radiotherapy

Learned SIRT
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Model trained on lung CTs
Generalizes well

Cone beam geometry reflecting Elekta Synergy with 60
projections

7/18/2019

12



7/18/2019

Generalizes well to real measurements

Experiment CNR
FBF (o0 Aiter) TET
FBP (he0.5) 195
SIRT (100 itcrations) 2176
SIRT (230 it <) 13.67
SIRT (1000 i 6657

(a) FPB no filter (b) FBP h=0.8  (¢) SIRT 250 iterations ISR o o o | 319

ISIRT thi se model) | 34.52

- ISIRT (Patient model) 1711023

(d) ISIRT. Jow noise (¢) ISIRT, highnoise () ISIRT, patient model
model model

Generalizes well to real measurements

(a) SIRT 250 iterations (b) ISIRT. highnoise (c) ISIRT. patient model
model
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MRI reconstruction

KTA
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The highest
sampled
Frequency
(Bandwidth)
Determines the
Image
Resolution

MRI Process

MR samples acquired in the
spatial frequency domain, aka. k-
space

Proper image is retrieved by
sampling at the Nyquist-rate, i.e.
“fully sampled”

Scanning time is reduced by
acquiring partial measurements

Corruption process given by the
forward model: ¥ = FPFx+n

High bandwidth Low bandwidth

Target Measurement
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Same story, use deep learning.
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How to speed up? Different sampling,
different 3

Recurrent inference
machines Vo

Combine convolutional layers
and GRU cells

Maintain two internal states

+ AndT external states
(reconstructions)

MSE averaged over all T external
states used for training:

1 T
Lixr)= 3l — x|
t=1

Putzky & Welling, ICLR 2017

Data Used 0.7mm coronal T2*-

weighted brain images from

7T scanner

1.0mm transversal T1-weighted
brain images from 3T scanner 0.6x0.5mm T2-weighted
knee images from 3T
scanner at all angles
http://mridata.org/fullysa
mpled/knees
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Model trained on all data, and cross validated

For acceleration factors 2x, 3x, 4x, and 5x
on Gaussian distribution

SSIM, NRMSE, and PSNR were used as a
metrics of reconstruction quality

Compared with

« U-net postprocessing
« Compressed Sensing

Hyun, arXiv 2017 N
Lustig, Signal Processing 2008

RIMs Outperform U-nets for all accelerations

ata = Brain 1.0mm T1 Data = Brain 0.7mm T2* Data = Knee 0.5-0.6mm T2
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You do not need

a lot of data

Insensitivity to

acceleration factor

The RIM and U-net were trained with

masks at 4x acceleration

And tested on random acceleration
factors sampled from U(1.5, 5.2)

Likert-score
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Ratings by neuroradiologist
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Data = Brain 1.0mm T1

4x 8x 1x

Acceleration

Data = Brain 0.7mm T2*

. Ground Truth
- CS
. RIM

Acceleration
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Likert-scale:
5: Excellent
2: Fair
1: Poor

4x 8x
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Questions?
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