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2019 estimated for the whole year based on the values as of July 17, 2019. dm

Fully Connected Neural Network

» Each layer fully connects to previous layer
« Difficult to train (many parameters in W and b)
» Spatial relations not necessarily preserved

Input Hidden Hidden Hidden Output
e.g. 75x100x3 pixels e.g. 1label
eg. e.g. El Alamo
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y(x) = f(W-z+b) with f(z) = (f(x1), f(w2),...) point-wise scalar, e.g. f(x) = 2v0 = ReLU

Output
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Convolutional Neural Network (CNN)

Replace dense Win y(z) = f(W -z + b) by a sparse
matrix W with sparsity being of convolutional type.

CNNs consist (mainly) of convolutional layers.
Convolutional layers are not fully connected.

Convolutional layers are connected by small, say
3x3, convolution kernels whose entries need to be
found by training.

CNNs preserve spatial relations to some extent.

Src Dst
512x512xF 512x512xG

Output:

Input: 384 x 256 x 4

192 x 128 x 40

24x16

3 x 3 Convolution, ReLU
1x1 Convolution, ReLU
22 Max. Pooling

12 x 8 x 480 Y

2 x2 Upsampling
6xax960 |O- Depth Concatenate

10, Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. Proc. MICCAI:234-241, 2015. dm

Generative Adversarial Network?

(GAN)

» Useful, if no direct ground truth (GT) is available, the
training data are unpaired, unsupervised learning

Counterfeiter fake currency fake currency Police
Generator G Discriminator D

true = [

sigmoid in-between

provide

true data

Treasury
Data pool

1Goodfellow et al. 2014 dm
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Outline

. Making up data

. Noise reduction
. Replacement of lengthy computations

. Image reconstruction

Part 1:

Making up Data

Limited Angle Example

FBP (150°)

image predicton for Liniec-Anos Tomooraphy viaDeep Learting wih Convoluional N ewvork. ey
Hanming Zhang, Liang Li, Kai Qiao, Linyuan Wang, Bin Yan, Lei Li, Guoen Hu. arXiv 2016.
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MAR Example

» Deep CNN-driven patch-based combination of the
advantages of several MAR methods trained on

simulated artifacts

» followed by segmentation into tissue classes
« followed by forward projection of the CNN prior and

replacement of metal areas of the original sinogram
« followed by reconstruction

Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray dm
8.

Computed Tomography. TMI 37(6):1370-1381, June 201¢

(a) Reference Image (b) Original image
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Sparse View Restoration Example

Ground truth

(<) 96 view

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT dikfz.
Reconstruction via Persistent Homology Analysis. ArXiv 2016.
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__Ground truth : Total variation __ Proposed

(a) 48 view

(b) 64 view

(c) 96 view

Sparse CT Recon with
Data Consistency.

> | B>
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A. Kofler, M. Haltmeier, C. Kolbitsch, M. KachelrieB, and M. Dewey. A U-Nets Cascade for Sparse dkﬁ'
View Computed Tomography, MICCAI 2018

Part 2:

Noise Reduction
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Noise Removal Example 1

» 3-layer CNN uses low dose and corresponding
normal dose image patches for training

Normal dose Low dose ASD-POCS

Hu Chen, Yi Zhan, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Znou, and . Low-dose CT via convolutional dm
Peura metwerk. Biometical GBES Exprest Sy 5Tas0s, Februtny 3017

Noise Removal Example 2
Task: Reduce noise from low dose CT images.
A conditional generative adversarial networks (GAN) is used
Generator G:

— 3D CNN that operates on small cardiac CT sub volumes

— Seven 3x3x3 convolutional layers yielding a receptive field of 15x15x15
voxels for each destination voxel

— Depths (features) from 32 to 128
— Batch norm only in the hidden layers

— Subtracting skip connection
Discriminator
— Sees either routine dose image or a

generator-denoised low dose image . III “II Dw
— Two 3x3x3 layers followed by several e
w

3x3 layers with varying strides
— Feedback from D prevents smoothing.
Training:

— Unenhanced (why?) patient data acquired
with Philips Briliance iCT 256 at 120 kV.

— Two scans (why?) per patient, one with 0.2 mSv and one with 0.9 mSv effective dose.

Opsmosas 1611

O somcr o

3. Wolterik, T. Leiner, M. Viergever, and . 1sgum. Generative Advrsarial Networks for Noise
Rodusion in Low-Dose CT. IEEE T 3e(17) 5536 9544, ber- 2017 dkfz.

Noise Removal Example 2

* G, and G, include supervised learning and thus
perform only with phantom measurements.

* G;is unsupervised.

* G;is said to generate images with a more similar
appearance to the routine-dose CT. Feedback from
the discriminator D prevents smoothing the image.

Genorator G, Generator G, Generator G,
11Ghalhell} 116 ol

3. Wolerink, . Leiner, M, Virgever,and I igum, Generative Advarsarial Networks or Noise
Reducnon i Lon-Dase G ILEE TN 36(15) 2530 5544, bee 20T dkfz.
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Noise Removal Example 2

W

Low dose image (O.

3. Woleink, . Leiner, M, Virgever,and | Iigum, Generative Adversarial Networks or Nolse
Reduciion in Low-Dose CT. IEEE TI 36(12)2536.2544, Dec. 2017, dkfz.

Noise Removal Example 2

iDose level 3 reconstruction (0.2 mSv)

3. Wolterik, T. Leiner, M. Viergever, and . 1sgum. Generative Advrsarial Networks for Noise
Reduciion in Low-Dose CT. IEEE THI 36(12)2536.254, Dec. 2017, dkfz.

Noise Removal Example 2

Denoised low dose image (0.2 mSv)

3. Wolerink, . Leiner, M, Virgever,and I igum, Generative Advarsarial Networks or Noise
Reducnon i Lon-Dase G ILEE TN 36(15) 2530 5544, bee 20T dkfz.
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Noise Removal Example 2

4

Normal dose image (0.9 mSv)

3. Woleink, . Leiner, M, Virgever,and | Iigum, Generative Adversarial Networks or Nolse
Reduciion in Low-Dose CT. IEEE TI 36(12)2536.2544, Dec. 2017, dkfz.

Noise Removal Example 3

Input
dose

s et

Camz 128, (bt

e s

Skip

connection

Predicted
noise|

subtraction
Architecture based on state-of-the art

networks for image classification (ResNet). @
. utput
32 conv layers with skip connections Gleir el e
About 2 million tunable parameters in total CTimage:
Input is arbitrarily-size stack of images, Full-dose

with a fixed number of adjacent slices in reference
the channel/feature dimension.

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subiraction for Low-Dose CT
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018, dm

Noise Removal Example 3

Low dose images (1/4 of full dose)

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Noise Removal Example 3

Denoised low dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subraction for Low-Dose CT
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018, dm

Noise Removal Example 3

Full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subiraction for Low-Dose CT
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018, dm

Noise Removal Example 3

Denoised full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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... and its Extension to DECT

Low dose X
Full dose (1/4 of full dose) Denoised low dose

Andrew D. Missert, Lifeng Yu, Shuai Leng, and Cynihia H. McCollough. Noise Subtraction for Dual Energy
CT Images Using a Deep Convolutional Neural Network. AAPM annual meeting 2018, dkﬁ.

Noise Removal Example 4

[E——
i

el

o ComeNetProcess

Siipd
[ Waveler-based
| processin

Residusl Image Estimation

Y. Wang et al. erative qualty enhancement via esidual-ariact earning networks for low-dose CT.
Phys. Med. Biol 63:215004, 2015 dkfz.

FBP(200 mAs) FBP(10 mAs) IRLNet(10 mAs, T-Not) IRLNet(10 mAs, A-Net)

V- N U SNy
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Noise Removal Example 5

ECG-based TCM yields cardiac
phases with high noise.

Train a cycle GAN that learns from the low noise
phases to remove noise in the high noise phases.

50 patient cases
used for training.

Nice results!

Lauv1 [Pl .
Ligentiert

Ligensieyz = WGnalxa) = xally

Loz 087 L, p
Gga —g i— Gap —
A = high noise

B = low noise Leyetez

€ Kang, J.C. Ye et al. Cycle-consistent adversarial denoising network for multiphase
coronary CT angiography. Med. Phys. 46(2), February 2019. dm

Input: Phase 1 Result Target: Phase 8 Input - Result

Input: Phase 1 Target: Phase 8 Input: Phase 1 Target: Phase 8
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Noise Removal Example 6
Canon‘s AiCE

Notwork Training

taken from medical ice_dir dm

Noise Removal Example 7
GE‘s True Fidelity

» Based on adeep CNN

» Trained to restore low-dose CT data to match the
properties of Veo, the model-based IR of GE.

* No information can be obtained in how the training is
conducted for the product implementation.

25D DEEP LEARNING FOR CT IMAGE RECONSTRUCTION USING A MULTLGPU
IMPLEMENTATION
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No Low Noise Images Required to

Train Denoising Networks!

Noise2Noise: Learning Image Restoration without Clean Data

Jaakko Lehtinen'* Jacob Munkberz' Jon Haselgren' Samuli Laine’ Tero Karras' Mitka Aittala’ Timo Alla’

Abstract

J. Lehtinen et al, No, oround truth Input

Clean Data. https:/farxiv.org/pdf/1803.04189.pdf. August 2018.

0 Low Noise Images Required to

Train Denoising Networks!

Estimation can be regarded as ML estimation by interpreting the

loss function as the negative log likelihood.

On expectation, the estimate remains unchanged if we replace
the targets with random numbers whose expectations match

the targets.

Input-conditioned target distributions p(y|x) can be replaced
with arbitrary distributions that have the same conditional

expected values.

Consequently, we may corrupt the training targets of a neural
network with zero-mean noise without changing what the
network learns.

Useful for image restoration tasks where the expectation of the
corrupted input data is the clean target that we seek to restore.

Denoising possible if at least two realizations of each image are
available.

J. Lehtinen et al. Noise2Noise: Learning Image Restoration without
Clean Data. hitps:/larxiv.org/pdf/1803.04189.pdf. August 2018, dkfz.

MAE:128.342, SNR:13.772, SSIM: 0306  MAE:26.710, SNR:27.232, SSIM: 0.846  MAE:27.284, SNR:27.301, SSIM: 0.524

(a) Low-dose (b) Ra domain Ld2Ld nage-domain La2Ld

(d) Reference

N. Yuan, 3. Zou, 2. Qi, Lowdose CT image denoising without high-dose reference images
Proc. 15 Fullysh Meating 11672115, 2015 dkfz.
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Part 3:

Replacement of Lengthy Computations

Fast Physics

Empirical Shading Correction:

ScatterNet

Net to convert CBCT log (why?) rawdata into artifact-free data.

Net architecture:
— Small receptive field spectrum converter block adapts the attenuation values.
— Residual U-Net then follows to account for scatter.

Pixel-wise loss function comparing the corrected CBCT projections
with those of the reference shading correction method.

Reference shading correction method:

— Use data from a clinical CT scan as an artifact-free prior.
— Intensity domain frequency split between planning CT and CBCT:

» Deformably register planning CT onto CBCT and forward project and
exponentiate to obtain “ideal” intensity data

» Scale CBCT intensities to match the prior CT intensities
» Corrected intensities = LP(forward proj. CT)+HP(scaled uncorr. CBCT)

ScatterNet replaces the previous correction method and thus

speeds up computation and does not make use of the planning CT.

D. Hansen, K. Parodi et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction, Med. Phys., Sep. 2018. dm

ScatterNet

D. Hansen, K. Parodi et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction, Med. Phys., Sep. 2018. dm
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Deep Scatter Estimation

Scatter Correction

Scatter suppression Scatter estimation

« Anti-scatter grids « Monte Carlo simulation
» Collimators + Kernel-based approaches

+ Boltzmann transport
» Primary modulation
+ Beam blockers

Anti-scatter grid
Measured intensity ~ Scatter estimate

Monte Carlo Scatter Estimation

« Simulation of photon trajectories according to
physical interaction probabilities.

* Simulating a large numk- ries well
approxim=+-=

scatter
distribution

Seite 15
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Deep Scatter Estimation (DSE)

Train a deep convolutional neural network (~*'N) to

estimate scatter using a functir-
projection data As ‘= 1 u‘.e

01

I n set
raphic data _
tomOQ Scatter estimate

Moniz <arlo

Convolutional neural network

3. Maier, M. Kachelrie et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018
3. Maier, M. Kachelrief etal. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dlcﬂ,

Deep Scatter Estimation

Network architecture & scatter estimation framework

Outpu

Input: scatter esnmate

—

192 x 128 x 40

- ©°

Downsampling )
and application 9 4 % 80 Upsampling
of operator to original
iy size

24 x 16 x 320

3 x 3 Convolution, ReLU:
1x1 Convolution, ReLU
22 Max. Pooling

2 x2 Upsampling

-O- Depth Concatenate

12 x 8 x 480 Y

Projection data 6 x 4 x 960

3 Male, . Kachelre et l. Deep scater estmaion (0SE): SPIE 2017 and Joural of Nondestrucive Evaluaiion 375, July 2018
r, M. Kachelrief et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2 dkfz.

Training the DSE Network

CBCT Setup Primary imeriit'y MC scatter simulation Poisson noise

» Input

Desired output

< Simulation of 6000 projections using
different heads and acquisition parameters
(80 kV, 140 kV in steps of 20 kV).

« Splitting into 80% training and 20%
validation data.

* Mean S/P =0.9

« 90t percentile S/P = 1.32

« Training minimizes MSE pixel-wise loss on
a GeForce GTX 1080 for 80 epochs.

2. Mair, M. Kacheio t . Dogp scattr etimaton (OS). SPIE 2017 and Journlof Nondesttuive Evaluton 7T, Jly 2018
Waier . Kachelrif et a. Rabustness of DSE. Med. Phys. 46(1)238-245, Janary 2015. dkfz.

Seite 16
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Testing of the DSE Network for
Simulated Data (at 120 kV)

Primary intensity ~ MC scatter simulation Poisson noise

>
j‘r ‘ + » Input
9

CBCT Setup

Ground truth

« Application of the DSE network to predict
scatter for simulated data of a head
(different from training data).

3. Maier, M. Kachelrie et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018
aier, M. Kachelrie et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dl(ﬂ,

Culrp)e P

Seite 17

17



Ref 1: Kernel-Based Scatter Estimation

» Kernel-based scatter estimation?:
— Estimation of scatter by a convolution of the scatter source term f'ip}

with a scatter propagation kernel Giu, c:

Open

parameters:

o} = argmin 35|11,

“ l ‘L
Samples of tl . a vl si
Tt catter estimate MC scatter simulation

Detector

coordinate

B, Ohnesorge, T. Flohr, K. Klingenbeck-Regn: Efficient object scatter correction algorithm for third and fourth
generation CT scanners. Eur. Radiol. 9, 563-569 (1999)
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Ref 2: Hybrid Scatter Estimation

Hybrid scatter estimation?:

— Estimation of scatter by a convolution of the scatter source term f'ip}
with a scatter propagation kernel Giu, ¢

Glu,e)

Open
parameters

nin Y || Fs, eut(m, . {ei }) = L(n,

2 l :ala

ata Scatter estimate

Detector
coordinate

2M. Baer, M. Kachelrie: Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57, 68496867 (2012). dkﬂ.

Results on Simulated Projection Data

tter ground (Kernel - GT) tybrid - (DSE-GT)
T /6T

View #1 F 14 1.2%

mean mean
absolute b absolute
percentage
error

al al
} projections projections projections
' |
EE . '

View #5
C=0% W=50% 1 C=0%W=50%

DSE trained to estimate scatter from primary plus scatter: High accuracy dm

Results on Slmulated Projection Data

Primary r ground ( GT) (Hybrid - G (DSE-GT)
inter truth (GT) /G

View #1 |
mean
W e absolute absolute
percentage I percentage
errl error
over
all all all
l projections. projections. projections
- e
View #3
esent form.
see scatter
View #4 ut data!
‘ p
, < |
View #5 4
c= .04 €=0%, W=50% C=0% W= 50%‘ €=0%W=50%
DSE trained to estimate scatter from primary only: Low accuracy dm
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Results on Simulated Projection Data

r ground (Kernel (Hybri
h (GT)

View #1 ' 1M |

mean

W o b absolute
percentage
error
over
all

projections, projections

e

resent form,
see Scatter

View #4

put data‘

in its in

e . ‘
c= b4 = =s50% M 0% W=50%1 C=0%W=50%

DSE trained to estimate scatter from primary plus scatter: High accuracy dm

Reconstructions of Simulated Data

Kernel-Based Hybrid Scatter Deep Scatter

Ground Truth No Correction Scatter Estimation Estimation Estimation

C=0HU, W=1000 HU

3. Maler, M. Kachelred et a. Doep scatter estmation (DSE). SPIE 2017 and Journal of Nondestrucive Evaluation 3757, Juy 2018
r, M. Kachelrie® et al. Robustness of DSE. Med. Phys. 46(1):238-249, January dkﬂ.

Testing of the DSE Network for

Measured Data (120 kV)

DKFZ table-top CT
w

X-ray source

Detector

Measurement of a head

phantom at our in-house

table-top CT. cmnmamrl 7

» Slit scan measurement .
serves as ground tru X-ray source I

Detector

2. Mair, M. Kacheio t . Dogp scattr etimaton (OS). SPIE 2017 and Journlof Nondesttuive Evaluton 7T, Jly 2018
Waier, . Kachelrif et a. Rabustness of DSE. Med. Phys. 46(1)235-245, Janvary dkfz.
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Reconstructions of Measured Data

Kernel-Based Hybrid Scatter Deep Scatter

Slit Scan LG Scatter Estimation Estimation Estimation

1

CT Reconstruc:

Difference to slit scan

C=0HU, W=1000 HU

3. Maier, M. Kachelrie et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018
Maier, M. Kachelrie® et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dm

0 HU, W = 1000 HU.

40 x 40 cm?
flat detector

Ground truth  Uncorrected  MC-corrected

40 x 40 cm?
flat detector

tter estimation in tru

13, Maier, M. KachelrieR et al. Deep scatter estimation (DSE) for truncated cone-beam CT (CBCT). RSNA 2018. dkﬂ.
2J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.

Generalization
to Different Anatomical Regions

jown are the mean absolute pe

percentage err PES) of the testing data.
ind h from truncation due to the small the 40x

m flat detector

3. Maler, . Kachered et al. Doep scatter estmation (DSE). SPIE 2017 and Journa of Nondestruciive Evaluation 377, July 2018,
5. Maier, . Rachelrief et a Robustness of DSE. Med. Phys. 46(1):238-240, danuary 2010, dkfz.
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Conclusions on DSE

DSE needs about 20 ms per projection. It is a fast and
accurate alternative to Monte Carlo (MC) simulations.

DSE outperforms kernel-based approaches in terms
of accuracy and speed.

Interesting observations
— DSE can estimate scatter from a single (!) x-ray image.
— DSE can accurately estimate scatter from a primary+scatter image.

— DSE cannot accurately estimate scatter from a primary only image.
— DSE may thus outperform MC even though DSE is trained with MC.

DSE is not restricted to rep cing MC scatter

estimates.
DSE can rather be trained with any other scatter

estimate, including those based on measurements.

Estimation of Dose Distributions

Useful to study dose reduction techniques
— Tube current modulation

— Prefiltration and shaped filtration
— Tube voltage settings

Useful to estimate patient dose
— Risk assessment requires segmentation of the organs (difficult)

— Often semiantropomorphic patient models take over

— The infamous k-factors that convert DLP into D are derived this way,
€.9. Kepest = 0.014 mSv/mGy/cm

Useful for patient-specific CT scan protocol optimization
However: Dose estimation does not work in real time!

J. Maier, E. Eulig, S. Sawall, and M. Kachelrie8. Real-time patient-specific CT dose estimation using a deep convolutional neural
network, Proc. IEEE MIC 2018 and ECR Book of Absiracts 2019. Best Paper within Machine Learning at ECR 2019!

Influence of Bowtie Filter

+ Commercial CT-scanners are usually equipped with a bowtie
filter in order to optimize the patient dose distribution.

* Monte-Carlo dose calculations or statistical reconstruction
algorithms require exact knowledge of the bowtie filter.

» The shape as well as the composition of the bowtie filter is

usually not disclosed by the CT vendors.

source Patient dose
distribution of a

circular s

bowtie filter

3. Maier, E. Eulig, S. Sawall, and M. Kachelries. Real-time patient-speific CT dose estimation using a deep convolutional neural
network, Proc. IEEE MIC 2018 and ECR Book of Absiracts 2019. Best Paper within Machine Learning at ECR 2019!
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Patient-Specific Dose Estimation

» Accurate solutions:
— Monte Carlo (MC) simulation?, gold standard, stochastic LBTE solver
— Analytic linear Boltzmann transport equation (LBTE) solver?
- Accurate but computationally expensive

 Fast alternatives:
— Application of patient-specific conversion factors to the DLP2.
— Application of look-up tables using MC simulations of phantoms*.
— Analytic approximation of CT dose depositions.

- Fast but less accurate

(SSDE) provides a simple method tc
ed Phys. 41, 2014,
re for reporting organ doses from CT for adult and pediatric patients”, Phys.

for n in CT”, Med. Phys. 42, 2015.

Deep Dose Estimation (DDE)

» Combine fast and accurate CT dose estimation using
a deep convolutional neural network.

» Train the network to reproduce MC dose estimates
given the CT image and a first-order dose estimate.

2-channel input:

256256 x 48 x 16
CTimage

128x128x24% 32

e \
l’mderdus | /

| illlll |.|.|.||||||I|i

16x16x3x256
333 Convolution(strde=1),RetU [} 3x3x3 Convolution(stride =2), Rely | 1x1x 1 Convolution(stride =1),RelU 222 Upsampling

QO pepth concatenate

3. Maler, E. Eulig, S. Sawall, and M. Kachelried. Real-time patient-specific CT dose estimation using a deep convolutional neural
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019! dm

Training and Validation

Simulation of 1440 circular dual-source

CT scans (64x0.6 mm, FOM, = 50 cm, TubeA
FOMg = 32 cm) of thorax, abdomen,
and pelvis using 12 different patients.
Simulation with and without bowtie.

No data augmentation

Tube B

Reconstruction on a 512x512x96 grid
with 1 mm voxel size, followed by 2x2x2
binning for dose estimation.

9 patients were used for training and 3 for testing.

DDE was trained for 300 epochs on an Nvidia Quadro
P6000 GPU using a mean absolute error pixel-wise
loss, the Adam optimizer, and a batch size of 4.

The same weights and biases were used for all cases.

1440 = 12 patients x 20 z-positions x 6 modes (A, A+bowtie, A+bowtie+TCM, B, B+Bowtie, B+bowtie+TCM) dm
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RESES

Thorax, tube A, 120 kV, with bowtie

CT image First order dose

MC uses 16 CPU kel
DDE uses one Hv\deuadm P600
GPU

DDE training took 74 h for 300 epochs,
1440 samples, 48 slices per sample

Relative error

3. Maler, E. Eulig, S. Sawall, and M. Kachelrief. Real-time patient-specific CT dose estimation using a deep convolutional neural
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019! dkﬁ.

RES S

Thorax, tube A, 120 kV, no bowtie

CT image First order dose

hfor 300 epod
ces per sample

. Sawall, and M. Kachelrief. Real-time patient-specific CT dose estimation using a deep convolutional neural
jork, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!

RESES

Thorax, tube B, 120 kV, no bowtie

CT image First order dose

DDE lrawmygmnk 74h for 300 epoc
1440 per sample

Relatlve error

3. Maler, €. Eui, S. Sawal and M. Kachelret, Rel-ime patient-specific CT dose estimation using  dsep convalutional neurel
network, Proc. IEEE MIC 2018 and ECR Book of Absiracts 2019. Best Paper within Machine Learning at ECR 201
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RESES

Abdomen, tube A, 120 kV, with bowtie

CT image First order dose

MC uses 16 CPU ker
s one Hv\deuadm P600

DDE training took 74 h for 300 epoc
1440 samples, 4 er sample

Relative error

3. Maler, E. Eulig, S. Sawall, and M. Kachelrief. Real-time patient-specific CT dose estimation using a deep convolutional neural
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J. Maier, E. Eulig, S. Sawall, and M. Kachelrie8. Real-time patient-specific CT dose estimation using a deep convolutional neural dkﬂ.

Conclusions on DDE

As shown, DDE works well with 360° circle scans.

What is not shown in this presentation is that DDE
can be trained to provide accurate dose predictions
- for sequence scans

— for partial scans (less than 360°)

— for spiral scans

— for different tube voltages

— for scans with and without bowtie filtration
— for scans with tube current modulation

In practice it may therefore be not necessary to
perform separate training runs for these cases.

Thus, accurate real-time patient dose estimation may
become feasible with DDE.

network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!

Part 4:

Image Reconstruction

Often “Just” Image Restoration

Speeding up iterative reconstruction by training a
CNN to convert an FBP image into an iterative image

— Canon'‘s AIiCE algorithm

— GE‘s True Fidelity algorithm

— plus a few more algorithms proposed in the literature
Noise reduction by training, e.g. a mapping from low
dose to high dose images

— many examples in the literature, some in this presentation
Artifact reduction in image domain

— many examples in the literature, one shown in this presentation
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Sometimes “Real” Image

Reconstruction

Networks employing data consistency layers

Networks including backprojection layers
Learning of backprojectors

End-to-end training from sinogram to image
Unrolled iterative reconstruction with learned priors

Y

x,:ngnthlm-@ic]m- i

Sparse CT Recon with
Data Consistency.

Layers (DCLS)

A. Kofler, M. Haltmeier, C. Kolbitsch, M. KachelrieB, and M. Dewey. A U-Nets Cascade for Sparse dkﬁ'
View Computed Tomography, MICCAI 2018

Variational Network-Based
Image Reconstruction

X f—

p)+ VR(f)

motivated
primal dual app

] [—w.'mm.(-u:] ‘/Hfﬁrum(*w))] &

(a) Variational Network (VNAstructure for CT

e e\
e EE

(b) VU for CT denoising (¢) VU for CT reconstruction

E. Kobler, R. Otazo et al. Variational network learning for low-dose CT. Proc. 5t CT-Meeting:430-434, 2018. dl(ﬁ.
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full dose 1/4 dose 1/6 dose

Conclusions on Deep CT

* Machine learning will play a significant role
in CT image formation.
» High potential for
— Artifact correction
— Noise and dose reduction
— Real-time dose assessment (also for RT)

» Care has to be taken
— Underdetermined acquisition, e.g. sparse view or
limited angle CT, require the net to make up information!
— Nice looking images do not necessarily represent the ground truth.

— Data consistency layers and variational networks with rawdata
access may ensure that the information that is made up is
consistent with the measured data.

Thank You!

The 6 International Conference on
Image Formation in X-Ray Computed Tomography

August 3 - August 7 » 2020 * Regensburg * Germany ® www.ct-meeting.org

This presentation will soon be available at w
Job opportunities through DKFZ’s international Fellowship programs (marc.kachelriess@dkfz.de).
Parts of the reconstruction software were provided by RayConStruct® GmbH, Niirnberg, Germany.
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