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Therapeutic ultrasound and radiation 
therapy dose relationships

S. C. Brüningk

Motivation - Multimodality therapies 

• Modern cancer treatments are multimodality

• Biological effects may vary significantly between 

modalities

• Scope for optimizing treatment dosing and 

scheduling

• Personalized treatments

• Quantification and modelling of biological effects 

induced

Radiation Surgery

Chemo
Targeted 

Therapies

Tumour 
ablation …Hyperthermia

Hormone 

Therapy

Immuno-

Therapy

Analysis and quantification of biological effects

At cell level – Cellular targets, cell cycle sensitivity, micro-environmental influence

Cell survival modelling – isoeffective treatments

Importance of dynamic cell death (Monolayer and 3D cultures)

Systems biology simulations – modelling dynamic response
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Biological effects of radiation

Stress: Ionizing radiation (Dose)

Biological target: DNA – Double strand breaks

Microenvironment: Oxygen effect 

Cell cycle: Increased resistance in G2,S

Cell death: Mitotic catastrophe, Senescence, Apoptosis, Necrosis

Jordan et al., 2012, Frontiers in Pharmacology (3)

Radiation

𝑡43 = 𝑡 ∙ 𝑅𝑇−43℃ with 𝑅 = ቊ
0.25 𝑇 < 43℃
0.5 ≥ 43℃

Biological effects of hyperthermia

Thermal dose concept: Calculate the time at 43˚C to achieve equivalent cell survival

T Temperature

t Duration

t43 Thermal dose

Hyperthermia

Stress: Elevation of temperature above physiological range  (thermal dose)

Biological target: Multiple cellular components, functional and structural proteins

Microenvironment: pH dependence

Cell cycle: Increased resistance in G1

Cell death: Necrosis/Apoptosis/Mitotic cell death

Biological effects of hyperthermia

Hyperthermia

Normal Heat-Shocked

Richter et al., 2010, Molecular Cell (40)

Stress: Elevation of temperature above physiological range  (thermal dose)

Biological target: Multiple cellular components, functional and structural proteins

Microenvironment: pH dependence

Cell cycle: Increased resistance in G1

Cell death: Necrosis/Apoptosis/Mitotic cell death
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Biological effects of focused ultrasound - thermal

Tumour 

Ablation

Stress: Elevation of temperature to boiling point

Biological target: -

Microenvironment: -

Cell death: Coagulation necrosis

Cell cycle: -

1cm 100 μm

Heat-induced radio-sensitization 

Hyperthermia Radiation
Tumour 
ablation

• Mechanism of action: inhibition of DNA repair, different 
cellular targets, difference in cell cycle sensitivity

• Synergistic effects of hyperthermia/tumor ablation 

and radiation

Heat-induced radio-sensitization 

Hyperthermia Radiation
Tumour 
ablation

• Treatment sequence and scheduling impacts radio-

sensitization potential and may act differently on 

normal and tumor cells

Horsman et al., 2007, Clinical Oncology (19)

Normal cells
Tumour cells

• Mechanism of action: inhibition of DNA repair, different 
cellular targets, difference in cell cycle sensitivity

• Synergistic effects of hyperthermia/tumor ablation 

and radiation
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Heat-induced radio-sensitization 

• Heating applied locally to the tumor may sensitize 

resistant tumors (or sub regions) to radiotherapy

Hyperthermia Radiation
Tumour 
ablation

Image: G. Mirams et al., PLoS Comput. Biol. 9 (3), 2013

Oxygen
Transducer

• Treatment sequence and scheduling impacts radio-

sensitization potential and may act differently on 

normal and tumor cells

• Mechanism of action: inhibition of DNA repair, different 
cellular targets, difference in cell cycle sensitivity

• Synergistic effects of hyperthermia/tumor ablation 

and radiation

Heat-induced radio-sensitization 

Hyperthermia Radiation
Tumour 
ablation

PhD thesis M. Costa, 2017, The Institute of Cancer Research

• Heating applied locally to the tumor may sensitize 

resistant tumors (or sub regions) to radiotherapy

• Treatment sequence and scheduling impacts radio-

sensitization potential and may act differently on 

normal and tumor cells

• Mechanism of action: inhibition of DNA repair, different 
cellular targets, difference in cell cycle sensitivity

• Synergistic effects of hyperthermia/tumor ablation 

and radiation

Quantifying heat-induced radio-sensitization: Evaluating cell survival

• Gold standard: Clonogenic assay

• Account for reproductive capability of isolated cells only

• No information on dynamic processes

• Easy to control micro-environmental conditions (hypoxia/normoxia/pH)

• Use cell survival data to calculate biological dose weighting for hyperthermia treatments

Treat Plate single cell 
suspension

Plot 
surviving 

fraction as 
function of 

‘dose’

Count colonies

𝑆 =
𝑁𝑇,𝑐𝑜𝑢𝑛𝑡𝑒𝑑/𝑁𝑇,𝑠𝑒𝑒𝑑𝑒𝑑

𝑁𝐶,𝑐𝑜𝑢𝑛𝑡𝑒𝑑/𝑁𝐶,𝑠𝑒𝑒𝑑𝑒𝑑

incubate
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Radiation+Hyperthermia

• Shape of the survival curve may be treatment dependent

• Calculate biological equivalent dose (BEQD) to express hyperthermia treatments in terms of radiation dose based on
iso-effective treatments 

• Parameterize the dependence of BEQD on thermal dose

BEQD (S,t,T)

Reference 
survival level

Quantifying heat-induced radio-sensitization: Evaluating cell survival

TER(𝑆, 𝑡, 𝑇) =
𝐷(𝑆,0,37𝐶)

𝐵𝐸𝑄𝐷(𝑆,𝑡,𝑇)
thermal enhancement ratio (TER)

Hyperthermia Radiation

-

-

-

−ln(𝑆) = 𝐷0𝑡 with     
1

𝐷0
= 𝑘 = 𝐴𝑒

−
𝐸𝑎
𝑘𝐵𝑇

• Linear-quadratic model (radiation) 

−log(𝑆) = 𝛼𝑑 + 𝛽𝑑2

• Arrhenius model (hyperthermia)

Quantifying heat-induced radio-sensitization: Evaluating cell survival

Evaluating cell survival: Radiation + Hyperthermia

• AlphaR model: Action and counter-action of damage and repair

α0 Damage

αR Damage repair

β Damage to repair mechanisms

(t,T)

(t,T)
(t,T)

Y0 Threshold to repair mechanism

c Integration constant

−l𝑛(𝑆) = ൝
(𝛼0−𝛼𝑅)𝑑 + 𝛽𝑑2 𝑌 ≤ 𝑌0

𝛼0𝑑 + 𝑐 𝑌 > 𝑌0

𝜶𝟎 = 𝜶𝑹 𝜶 = 𝜶𝟎 −𝜶𝑹

Brueningk et al., Int J Hyperthermia, 2018; 34(4):392-402

AlphaR model

95% conf. bounds

Experimental Data
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α0 ∆T = a1e
a2∆T

• Hyperthermia: Exponential temperature dependence of α0 and β

• Thermal dose is a valid predictor of heat-induced radio-sensitization

• Linear increase of α with thermal dose, β ≈ constant

Evaluating cell survival: Radiation + Hyperthermia

Brueningk et al., Int J Hyperthermia, 2018; 34(4):392-402

Isoeffective treatments – 2D growth

S ≈ 0.04 S ≈ 3∙10-5

• Same BEQD delivered by radiation, hyperthermia or a combination thereof

• Clonogenic survival does not account for the influence of the cell death mechanisms induced

• More sophisticated models are required to capture this process

• Ideally this model accounts for a more physiological micro-environment

Analysing spheroid response

• Physiological micro-environment

• Extracellular matrix

• Layered structure: Proliferating-quiescent-necrotic core

• “Contact effect”: increased treatment resistance of cells in 3D

• Hyperthermia: Build up of thermo-tolerance

[2] Durand et al., 1978, Radiation Research (75)

[1] Sutherland et al. , 1988, Science (240)

Proliferating
Quiescent/

Hypoxic

DAPI

2D culture
3D culture
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Time-lapse images on an Incucyte S3, PI fluorescence overlaid on phase contrast images of HCT116 tumor

spheroids over a time course of 21 days post treatment.

10 Gy 15min 47˚C 2Gy+ 7.5min 47C 

Analysing spheroid response

• Radiation: Shrinkage from outside inwards from the proliferating zone

• Hyperthermia: Cell death and detachment independent of proliferation status

• Combination: Mixed response

15min 47˚C 2Gy+ 7.5min 47C 

Analysing spheroid response

500µm

Control (Day 20) 80 CEM43 (Day 25)

• Despite isoeffective (thermal) doses delivered spheroid growth 

and cell viability differ significantly

• Difference in the cell death dynamics

• In spheroids hyperthermia leads to re-oxygenation/supply of 

more inner cells with nutrients

Modelling dynamic response - overview

• Simulate the dynamic biological response to multimodality therapies at a cellular level. By simulating a large 

number of interacting cells, insight into emergent tissue level phenomena can be achieved.

• Cellular automaton model simulates individual cells on a fixed sized grid (one voxel = one cell) with 

probability driven responses to treatments delivered on a macroscopic scale.

Spheroid/Monolayer growth – 2D/3D Lattice

Oxygenation – Diffusion model, central necrosis

Cell survival – Alpha R model (weighting for oxygenation, cell cycle stage) 

Dynamic cell death – Probability driven response cascade
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Dynamic response: Radiation
R2 = 0.98

• Mitotic catastrophe: Death upon division

• Initial delay: Less likely to die 

S Surviving fraction

N random number

Cell will die
Cell 

survives

Division Cell dies

M-Phase: 

Check

N>SRT N≤SRT

pmitoticDeath
1-pmitoticDeath

Dynamic response: Radiation

• Mitotic catastrophe: Death upon division

S Surviving fraction

N random number

• Initial delay: Less likely to die 

Cell will die
Cell 

survives

Division Cell dies

M-Phase: 

Check

N>SRT N≤SRT

pmitoticDeath
1-pmitoticDeath

Dynamic response: Hyperthermia

Cell will die Cell survives

Cell dies

Time up?

N>SHT N≤SHT

Timer assigned Cell cycle delay

S Surviving fraction

N random number

• Build up of thermo-tolerance in 3D cultured cells

• Cell death on average within 4 days – independent of cell proliferation
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Dynamic response: Hyperthermia

S Surviving fraction

N random number

• Build up of thermo-tolerance in 3D cultured cells

• Cell death on average within 4 days – independent of cell proliferation

Cell will die Cell survives

Cell dies

Time up?

N>SHT N≤SHT

Timer assigned Cell cycle delay

Combination treatments

• Overall surviving fraction S=SHT∙SHTRT

• Treat the proportion 1-SHTRT as undergoing radiation induced death

• From the remaining cells assign heated-induced cell death to a subpopulation 1-SHT

Summary

• The biological effects induced at cellular level by radiation and hyperthermia differ

significantly.

• Clonogenic cell survival is currently the gold standard assay to quantify treatment

efficacy and synergism between radiation and hyperthermia.

• Clonogenic assays do not account for differences in dynamic cell death.

• 3D tumour spheroids provide a much more physiological cellular microenvironment than

2D cultures.

• Biological equivalent dose levels calculated from clonogenic survival data was a poor

predictor of spheroid growth response.

• More advanced biological models are needed that account for micro-environmental

effects and differences in cell death dynamics to be applied to predict in vivo response.
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Thank you!


