Diagnostic Ultrasound Imaging QA/QC Hands-on Workshop

W

Course Organizer: Zheng Feng Lu, Ph.D. Professor, Dept. of Radiology, University of Chicago Chair, AAPM Ultrasound Subcommittee

<u>OA Overview</u>: James A. Zagzebski, Ph.D. Professor Emeritus, Dept. of Medical Physics University of Wisconsin, Madison, WI

Learning Objectives

- Define common elements of a QA program for diagnostic ultrasound imaging that meet ACR ultrasound lab accreditation requirements
- Identify QC tools, phantoms, and software for testing diagnostic ultrasound systems a
- Describe/(participate in) the use of these devices on general purpose ultrasound scanners as well as on a whole breast screening ultrasound system.

- 3D imaging capabilities via motorized translation of the array or via a 2D array.
- Very good gray-scale performance, Doppler, shear wave, contrast agents

Information From US Accreditation Bodies

- Ultrasound Accreditation Program Requirements, Am College of Radiology, http://www.acraccreditation.org
- ACR-AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Real Time Ultrasound Equipment. http://www.acr.org/~/media/ACR/Documents/PGTS/standards/MonitorUSEquipment.pdf
- All IM 1009 Amorican Institute of Litracound in Medicine
- AIUM 1998, American Institute of Ultrasound in Medicine, Routine Quality Assurance for Diagnostic Ultrasound Equipment. http://aium.s3.amazonaws.com/resourceLibrary/rqa.pdf

Annual Surveys, Routine QA (ACR)

• Annual surveys: required

- > Physical and and mechanical inspection; sterility
- > Image display performance
- Image Uniformity
- Element "dropout" and other sources on non-uniformity
- > System sensitivity and/or penetration capability
- Geometric measurement accuracy (during program initiation)
- 6-month Routine QC: optional
- > Same items as on annual survey
- http://www.acraccreditation.org/Modalities/Ultrasound

agree

Instructi 1=unife 2=mine 3=Sign 4=Imm Data tab	Instructions, uniformity ratings (UW-Madison; differs slightly from AAPM): 1=uniform 2=minor inhomogeneity (no more than 2 minor dips) 3=Significant inhomogeneities; transducer is functional, but consider replacing 4=Immediate repair or replacement recommended Data table (1 line for each transducer)							
Transducer ID/Serial Number	Cables/ cracks/ delaminate OK No		Uniformity, dropout OK No		Sensitivity (Depth of Penetration) (MHz/cm)	Geometric Accuracy H: cm/actual cm V: cm/actual cm	Conclusions and recommendations	
C1-5 79635YP9					5MHz/ H5MHz/	H: ∀:	Uniformity Rating 1 DOP ≈ to previous results ⊠ Yes □ No Click here to enter comments.	

Developments in Probe Testing Space: ¹FDA "Marketing Clearance of Dx US systems & Transducers"

- Guidance Document, 6/27/2019
- "Manufacturers should implement tests of a transducer when it is activated by the sonographer
- "Tests should be accessible to competent operators, service personnel"
- Machine sequences through each channel measuring the signal while the transducer is "in air."
- "Reports should identify for operators regions in an image that could be compromised"
- "Tests should be available when operators
- suspect a probe may be failing.

Aureon by Acertara System that tests ultrasound

transducers when driven by the scanner

W

- · 2D matrix receiver captures energy profile of transducer following each transmit pulse
- All 1-D and 2-D transducers from any manufacturer All operating modes, including ARFI
- and shear wave imaging
- Assesses lens stability over time
- Potential to calculate acoustic dose

Other ways to test transducers: Sonora FirstCall 2000

- FirstCall 2000 is an "early" probe diagnostic tool
- Echo from a curved or planar target in water is detected with each element
- Each element is tested for:
 - > Sensitivity
 - Capacitance
 - Pulse duration
 - Center frequency
 - > Bandwidth

- System developed by Wayne Moore and Colleagues in ~2001.

Transducer Tester Resurgence: ProbeHunter.com European company (Sweden) that has built and now markets an extended version of a probe tester (similar in many respects to the original Sonora) but with: 256 channels

- capabilities for testing newer US transducers adapters for nearly every make and model scanner and transducer

Sensitivity, Maximum Depth of Penetration

- Considered by many as a good overall check of the integrity of the system
- FOV set to match the phantom height or the maximum visualization depth of the transducer
- Output power (MI) at max
- · Transmit focus at deepest settings
- Gains, TGC for visualization to the maximum distance possible

		UW	Report Transducer worksheet (page 3)					
Transducer ID/Serial Number	Cable cracks delam	s/ s/ ninate No	Unifori dropou OK	nity, it No	Sensitivity (Depth of Penetration) (MHz/cm)	Geometric Accuracy H: cm/actual cm V: cm/actual cm	Conclusions and recommendations	
C1-5 79635YP9					5MHz/13.71cm H5MHz/10.6 cm S-N: 5MHz/13.8 cm H5MHz/10.3 cm	H: V:	Uniformity Rating 1 DOP = to previous results DOP = to previous results DOP = to previous results Yes I No Click here to enter comments.	

Ň		UW Report Transducer worksheet (page 3)							
ĺ	Transducer ID/Serial Number	Cables/ cracks/ delaminate OK No		Uniformity, dropout OK No		Sensitivity (Depth of Penetration) (MHz/cm)	Geometric Accuracy H: cm/actual cm V: cm/actual cm	Conclusions and recommendations	
	C1-5 79635YP9					5MHz/13.71cm H5MHz/10.6 cm S-N: 5MHz/13.8 cm H5MHz/13.3 cm	H: 6.05/6 V: 7.94/8 Lateral from 3D: 6.04/6	Uniformity Rating 1 DOP ≈ to previous results	
	L9-6						H: V:	Uniformity Rating DOP ≈ to previous results □ Yes □ No Click here to enter comments.	
	etc., for each probe						H: V:		

Beyond "Routine QC:" Important Areas for Medical Physics Involvement

- Tests of Presets using more advanced phantom testing
 Example: breast imaging using multi-row transducers
- Doppler evaluations

•

- Velocity accuracy
- Volume flow, (QIBA)
- Directional Discrimination; gate accuracy, etc.
- Elasticity, shear wave (SW) imaging
 - QIBA work on SW velocity in liver (advanced stages)

Liver Tissue Stiffness

"And on the basis of shear wave measurements, the liver exhibits a stiffness of 13.4 kilopascals."

W

Strain and shear wave imaging is built into most radiology machines.

- Important area of medical physics involvement
 - Support testing
 - Radiology resident education
 - > QIBA work

QIBA Effort: Shear Wave Speed in Liver QIBA Profile* Ultrasound Measurement of Shear Wave Speed for Estimation of Liver Fibrosis. If successful, shear wave assessments might be used for: patient treatment decisions monitor progression, response to treatment QIBA Profile: Places requirements on: Acquisition Devices, Technologists, Radiologists, training, actions Image Data Acquisition, Image Data Reconstruction, Image QA and Image Analysis. *Currently in draft form only. Committee heads: Brlan Garra, MD, Tim Hall, Ph.D., Andrej Milkowski, MS.

