Computational Models of Cardiac Arrhythmia

PATRICK BOYLE

Biomedical Modeling Using Imaging Data AAPM Annual Meeting, Tuesday, July 16, 2019

TAT	BIOENGINEERING	nmihayla@uwyadu		
	UNIVERSITY of WASHINGTON	pmjboyie@uw.edu		

What is cardiac arrhythmia?

Cardiac excitation

precedes contraction, delivery of blood to body

- · Electrocardiogram has principal electrical events
- No coordinated excitation = no O_2 delivered to body = death within minutes

What is cardiac arrhythmia?

Cardiac Arrhythmia Any disruption of heart's

- intrinsic rhythm regulation • Some arrhythmias are less lethal than others
- e.g., Atrial fibrillation poses no acute threat but increases risk of stroke

Major arrhythmia categories

Reentrant self-perpetuation Atrial Fibrillation

Best suited for anal ations condu

uly 16, 2019

Focal/triggered ectopy

Methodological overview

July 16, 2019

- 1. What are we trying to model?
- 2. How do these models work?
- 3. How can these models be used?

Computational Models of Cardiac Arrhythmia

Excitation at cell and organ scales

Refractoriness

- Generally, two stimuli = two action potentials
- What if we shorten the coupling interval (CI)?
- At its extreme, this can lead to complete action potential suppression

Refractoriness

- Generally, two stimuli = two action potentials
- What if we shorten the coupling interval (CI)?
- At its extreme, this can lead to complete action potential suppression
- Major consequences at the tissue scale!

of Cardiac Arrhythmia

Normal AP Propagation in Tissue

Normal AP Propagation in Tissue

July 16, 2019

Why do we care so much about reentry?

 Two "ingredients" for reentrant arrhythmia:
 Substrate: state of tissue after stimulus #1 (i.e., spatially heterogeneous refractoriness)
 Trigger: critically-timed stimulus #2

luly 16, 2019

- Many pathophysiological factors can give rise to these types of pro-arrhythmic substrates and triggers!
- Reentrant arrhythmias are complex; simulations can help explain how they work and reveal new treatments

Computational Models of Cardiac Arrhythmia

Conceptual basis of reentrant arrhythmia

Cell-scale building blocks

ulv 16, 2019

Cell-scale building blocks

Tissue-scale building blocks

July 16, 2019

ulv 16, 2019

- Solve PDE system(s) using finite element analysis to represent propagation • e.g., bidomain formulation:
- $\begin{array}{l} \nabla \cdot (\overline{\sigma}_i + \overline{\sigma}_{\theta}) \nabla \phi_{\theta} = \nabla \cdot \overline{\sigma}_i \nabla V_m I_{\theta} \\ \nabla \cdot \overline{\sigma}_i \nabla V_m = \nabla \cdot \overline{\sigma}_i \nabla \phi_{\theta} + \beta I_m \end{array}$ • Must be solved numerically
- using high-performance computing systems

Models of Cardiac Arrhythmia

al Models of Cardiac Arrhythmia

Tissue-scale building blocks

- Solve PDE system(s) using finite element analysis to represent propagation • e.g., bidomain formulation:
 - $\begin{array}{l} \nabla \cdot \left(\overline{\sigma}_i + \overline{\sigma}_e \right) \nabla \phi_e = \nabla \cdot \overline{\sigma}_i \nabla V_m I_e \\ \nabla \cdot \overline{\sigma}_i \nabla V_m = \nabla \cdot \overline{\sigma}_i \nabla \phi_e + \beta I_m \end{array}$
- Must be solved numerically using high-performance computing systems

Tissue-scale building blocks

- Solve PDE system(s) using finite element analysis to represent propagation e.g., bidomain formulation: $\nabla \cdot (\overline{\sigma}_l + \overline{\sigma}_{\theta}) \nabla \phi_{\theta} = -\nabla \cdot \overline{\sigma}_l \nabla V_m I_{\theta} \\ \nabla \cdot \overline{\sigma}_l \nabla V_m = -\nabla \cdot \overline{\sigma}_l \nabla \phi_{\theta} + J_m$
- Must be solved numerically using high-performance computing systems

Tissue-scale building blocks

July 16, 2019

- Solve PDE system(s) using finite element analysis to represent propagation • e.g., biomain formulation:
- $\begin{array}{l} \nabla \cdot (\overline{\sigma}_{i} + \overline{\sigma}_{e}) \nabla \phi_{e} = -\nabla \cdot \overline{\sigma}_{i} \nabla V_{m} I_{e} \\ \nabla \cdot \overline{\sigma}_{i} \nabla V_{m} = -\nabla \cdot \overline{\sigma}_{i} \nabla \phi_{e} + \beta I_{m} \end{array}$ • Must be solved numerically
- using high-performance computing systems

Organ-scale building blocks

Models of Cardiac Arrhythmia

Potential applications

Case study #1

Fast-turnaround patient-specific modeling of atrial fibrillation (AFib)

Computational Models of Cardiac Arrhythmia

The AFib epidemic

 AFib is an enormous health problem worldwide

July 16, 2019

July 16, 2019

- Most prevalent sustained arrhythmia (1-2%)
- Prevalence on the rise (~2.5× increase by 2050)
- Many patients transition to persistent AFib from less severe forms of disease

Persistent AFib is very hard to treat

Computational Models of Car

- Long-term ablation success rates are low
- Relationship between fibrotic remodeling and reentrant drivers of AFib is not well characterized
- Computational models can be a huge help!

July 16, 2019

Model reconstruction from LGE-MRI

Model parameterization

uly 16, 2019

Fibrotic myocardium: altered EP due to fibrotic remodeling (impaired excitability and conduction) mediated by *TGF-β1*

Zahid et al. (2016) Cardiovasc Res Computational Models of Cardiac Arrhythmia

Dynamics of simulated AFib

Potential value of modeling is high

- Better understand underlying mechanisms of AFib
- Identify patients at risk of developing AFib in the future (e.g., cryptogenic stroke)
- Patient-specific persistent AFib treatment planning <u>(OPTIMA trial at JHU)</u>

Boyle et al. (2019) Nature Biomedical Engineering (IN F Computational Models of Cardiac Arrhythmia

luly 16, 2019

July 16, 2019

OPTIMA Workflow

OPtimal Target Identification via Modeling of Arrhythmogenesis

Boyle et al. (2019) Nature Biomedical Engineering (IN PRESS) Computational Models of Cardiac Arrhythmia

OPTIMA outcomes are good, but...

ID	Rhythm at end of FU	FU duration (days)	Atrial ablation during FU
1	SR	543	No
2	SR	347	No
3	PAF/Afl	417	PAF/Afl
5	SR	399	No
6	SR	302	No
7	SR	315	No
8	SR	264	No
9	SR	239	No
10	SP	197	No

- No recurrence of persistent AF: 10/10
- 4/10 patients had paroxysmal AF/flutter during followup, including one repeat ablation

Boyle et al. (2019) Nature Biomedical Engineering (IN PRESS) uly 16, 2019 Computational Models of Cardiac Arrivytimia

... uptake will be hindered by complexity!

- Staggering computational complexity
- Model reconstruction: ~0.5-2 days
- "Substrate stress test": ~2-4 days
- <u>15-20 total days of CPU time</u>

July 16, 2019

ly 16, 2019

- Difficult to carry out simple parameter sensitivity analyses
 - Deng et al. (2017) Chaos: 60k CPU hours to test ±10% APD/CV in 12 atrial models

• The JAWS philosophy does not apply just ab

Computational Models of Cardiac Arrhyth

Long-Term Objective: Streamlined framework for atrial model reconstruction and realistic simulation of AFib

 Automate! Automate! Automate!
 Prioritize <u>Validation</u>, <u>Verification</u>, and <u>Uncertainty Quantification</u> (VVUQ)
 Produce clinically actionable results within a suitable timeframe

Computational Models of Cardiac Arrhythmia

Issue: Atrial image segmentation can be time consuming and labor intensive

- Solution? 3rd party image segmentation service • Every AFib ablation patient at UW LGE-MRI pre-procedure • Every scan gets processed off-site (Merisight, Utah)
- Benefits: no time spent on image segmentation or processing, consistency, ease of clinical integration
- Drawbacks: loss of precise control, current workflow produces single LA surface w/ normalized LGE values

Computational Models of Cardiac Arrhythmia

ulv16 2019

ulv 16, 2019

3rd party image segmentation

Issue: Mesh generation and refinement are time-consuming and unreliable

- Meshes produced by Merisight are too coarse for running cardiac EP simulations, have weird elements
- Commercial software options (Simpleware ScanIP, Materialise Mimics) are <u>\$\$\$</u>, produce meshes suitable for different types of finite element analysis and nearly always involve a GUI (i.e., death to automation)
- Solution? Explore Open Source Software (OSS) for potential solutions that can be run from command line

Computational Models of Cardiac Arrhythmia

Fully automated (re)-meshing

Issue: Simulation run-times are long

- Computational complexity impairs rapid turnaround times (clinical applications) and makes it challenging to carry out VVUQ (e.g., sensitivity analysis, etc.)
- Solution? Surface-only instead of volumetric models
- Benefits: huge performance boost, simpler meshing
- Drawbacks: information on transmurality abandoned

Simplified geometry (no transmurality)

Volumetric bi-atrial mesh

Surface-only mesh of LA

Performance of new models is great!

Simulated AFib in new models

Simulated AFib in new models

Simulated AFib in new models

- · Reentrant drivers are qualitatively similar to those seen in conventional models
- Dynamic localization to fibrotic tissue boundaries
- High spatiotemporal stability (i.e., little meandering)
- · Key distinction: Lack of chaotic activity and/or transient reentry in areas peripheral to driver · Consequence of surface only vs. volumetric models?

Computational Models of Cardiac Arrhythmia

Next steps

uly 16, 2019

July 16, 2019

uly 16, 2019

Model Framework Features	Lightweight	Conventional*
Completely automated	Yes	No
Rapid compute time	Yes	No
High mesh resolution	Yes	No
Reentrant arrhythmia inducible	Yes	Yes
Realistic fiber orientations	No	Yes
Atrial thickness, transmural fibrosis	No	Yes

- 1. Map fibers from atlas geometry via new UAC method
- 2. Approximate transmurality via bi-layer surface models Computational Models of Cardiac Arrhythmia

Preliminary data: UAC fiber mapping

Conclusions

ulv16 2019

July 16, 2019

A streamlined simulation framework is within reach!

If successful, this research promises to realize personalized computational models that could "follow the patient" in their electronic health records, with near-real-time updates

The new computational framework is not yet ready for showtime (validation is still needed), **but it will be soon!**

Computational Models of Cardiac Arrhythmia

Case study #2

Exploring anti-arrhythmia approaches based on cardiac optogenetics

Computational Models of Cardiac Arrhythmia

"Optogenetics": genetic encoding of light-sensitive proteins in excitable cells

Channelrhodopsin-2 (ChR2) light-gated NS cation channel
 Irradiation with blue light elicits a large depolarizing current

Noteworthy advantages of optogenetics

- Different opsins alter cell behavior in different ways
- Contact-free perturbation
- Patterned illumination = exquisite spatial and temporal precision
- Selective expression in specific cells/tissues = <u>selective stimulation</u>

luly 16, 2019

July 16, 2019

Optogenetic stimulation of the heart

Comprehensive modeling framework

Comprehensive modeling framework

_				
_				

A novel approach to arrhythmia therapy?

A novel approach to arrhythmia therapy?

nal Models of Cardiac Arrhythmia

As a clinical treatment?

- Optogenetic defibrillation, pacing, APD modulation
- Two key prerequisites:
 Light sensitization via gene/cell therapy
 - Illumination

luly 16, 2019

- As an experimental tool?
- New assays to quantify EP properties (contactfree, high-throughput)
- Patterned illumination can impose contrived scenarios (e.g., rotors)
- Light-based modulation of non-EP properties

A novel approach to arrhythmia therapy?

al Models of Cardiac Arrbythmia

As a clinical treatment?

- Optogenetic defibrillation, pacing, APD modulation
- Two key prerequisites:
 Light sensitization via
 - gene/cell therapy
 - Illumination

uly 16, 2019

- As an experimental tool?
- New assays to quantify EP properties (contactfree, high-throughput)
 Patterned illumination
- can impose contrived scenarios (e.g., rotors)
 Light-based modulation of non-EP properties

Optogenetic defibrillation

Optogenetic defibrillation

Optogenetic defibrillation

Optogenetic defibrillation

Optogenetic defibrillation

Optogenetic defibrillation/cardioversion via anion channelrhodopsins (ACRs)

- GtACR1: Green Light Sensitive Anion Channel
- Conducts anions and elicits strong currents in cardiomyocytes
- GtACR1 reversal potential near that of chloride ions (approx. –40 mV)

Optogenetic defibrillation/cardioversion via anion channelrhodopsins (ACRs)

- GtACR1: Green Light Sensitive Anion Channel • Conducts anions and
- elicits strong currents in cardiomyocytes
- GtACR1 reversal potential near that of chloride ions (approx. –40 mV)

Optogenetic defibrillation/cardioversion via anion channelrhodopsins (ACRs)

OptoGap: Light-based assay for cell-cell electrical coupling

- No direct quantitative method to assess electric coupling in multicellular tissue preparations
- Selective ChR2 expression in one type of cells (e.g., FBs)
- Threshold irradiance to elicit excitation ($E_{\rm e,thr}$) is proportional to inter-cellular gap junction resistance (R $_{\rm gl}$)
- Feasible at organ scale

ulv 16 2019

OptoGap: Light-based assay for cell-cell electrical coupling

OptoGap: Light-based assay for cell-cell electrical coupling

 Relationship between E_{e,thr} and coupling holds for a variety of spatial patterns of ChR2+ cells
 Contactless, potentially high-throughput, scales to tissue/organ levels

Conclusions

uly 16, 2019

~10 years on, cardiac optogenetics has emerged as a vibrant and rapidly-growing field

Development of a comprehensive framework for computational modeling has helped drive progress

New opsins and illumination strategies have created opportunities for optogenetics-based innovation, both experimentally and as a potential new treatment approach

Computational Models of Cardiac Arrhythmia

Cardiac Systems Simulation Lab UW Department of Bioengineering

Clinical EP team at UW Medical Center

Nazem Akoum Arun Sridhar Zeinab Birjandian Sakher Sarairah

Optogenetics

Emilia Entcheva Cookie Yu Thomas Karathanos

nal Models of Cardiac Arrhyti

Collaborators: Johns Hopkins N Trayanova

Collaborators: CARP consortium G Plank, E Vigmond

OPTIMA Team (JHU)

Natalia Trayanova Patrick Boyle Sohail Zahid Dong Dong Deng Adityo Prakosa Michael Murphy William Franceschi

Simulations Clinical EP

OPTIMA Patient Characteristics

Computational Models of Cardiac Arrhythmia

July 16, 2019

ID	Age	Sex	BMI	LA % fibrosis	RA % fibrosis	(mL/m ²)	RA VI (mL/m ²)	CHA ₂ DS ₂ - VASc	# Prior Ablations	Reconnected PVs (if any)
1	69	М	31	35.8	38.65	73.3	62.5	2	1	No
2	60	м	26	26.7	5.8	35.5	52.6	0	0	
3	73	м	27	46.9	34.4	87.8	74.4	5	3	No
4	72	F	34	0.7	5.5	59.3	58.7	2	0	
5	68	м	25	32.9	34.9	71.0	46.7	2	1	RSPV RIPV
6	67	м	29	19.7	15.6	43.3	38.2	2	0	
7	49	м	35	25.4	7.2	42.4	43.7	1	1	No LSPV
8	71	м	27	24.8	33.9	32.3	26.0	1	1	LIPV, RIPV
9	72	м	23.8	11.9	3.1	28.5	38.2	2	2	LSPV
10	59	м	40.2	15.8	6.8	41.9	34.4	1	0	
	66±7	9(90%)	30±5	24.1±12.4	18.6±14.2	51.5±20	47.5±14.6	2[1:2]	1[0:1.5]	

Comparison to clinical data

The dawn of cardiac optogentics

Optogenetic modulation of sympathetic tone

al Models of Cardiac Arrh

- Standard techniques lack spatial/temporal precision
- JellyOp: light-sensitive GPCR (activates G_s only)
- Light stimulation (2.9mW/mm² 5min), isoprenaline infusion (1µM 5min) led to similar increases in cAMP levels

July 16, 2019

a et al. (2019

Optogenetic modulation of heart rate

Closed-chest, automated optogenetic termination of atrial fibrillation in mice

- Gene painting technique used to light-sensitize RA
- Selective expression of ReaChR (red-sensitive)
- System is fully automated and self-contained
- AFib termination "in vivo" and in perfused hearts

luly 16, 2019

July 16, 2019

ulv 16, 2019

Closed-chest, automated optogenetic termination of atrial fibrillation in mice

- Gene painting technique used to light-sensitize RA
- Selective expression of ReaChR (red-sensitive)
- System is fully automated and self-contained
- AFib termination "in vivo"
 and in perfused hearts

Computational complexity

- Ionic models have 20+ state variables
- µs-order time steps required due to ODE system stiffness
- Millions of nodes due to stringent resolution limit (max: 200-300 µm)

Computational complexity

• Ic Si optimizations, of • µ simulations of card require HOURS OR Si DOZENS OF CF	e best available clinically relevant iac electrophysiology DAYS OF RUNTIME ON PUS IN PARALLEL
Stringent resolution limit	
(max: 200-300 µm)	100 μm mesh resolution Niederer et al. (2009) Philos Trans A Math Phys Eng Sci
July 16, 2019 Computational Mod	tels of Cardiac Arrhythmia