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1 Introduction

In addition to pathology detection, an essential challenge in neuroimaging is to describe patterns of
structural features: shape.

To build quantitative descriptions of shape, Computational Anatomy [1] focuses on shape dif-
ferences, rather than shape descriptions. These differences are modeled by transformations, which
become the objects of study.

In some applications, physical models for transformation are appropriate (e.g. deformations due
to breathing). When describing shape across populations, more abstract mathematical models are
necessary.

In this session we focus on answering three questions:

1. How can biological shape be described quantitatively?
2. How can we apply statistical techniques to its study?

3. How can we construct biomarkers of neurodegenerative disease?

2 The metric space of biological shape

The free form smooth and invertible transformations that preserve biological organization are called
the diffeomorphism group:

peDiff ¢:XCR* =X, 2z~ o).

Diffeomorphisms can be stored as a vector at each voxel, but are not vector valued. The group
is closed under composition, not addition and scalar multiplication:

o p? € Diff = ' o p? € Diff .

Computationally, diffeomorphisms are generated by integrating a smooth time varying velocity
field:

Gt = vi(t), o = id (identity), v, €V .



Smoothness and invertibility are ensured by embedding velocity fields in a Hilbert space V' whose
norm penalizes high spatial frequencies sufficiently:

(u,v)y = /Lu(m) cLv(z)dz, L (id+aA)?, A :Laplacian .

Diffeomorphic transformations that relate one image, I : X — R, to another, J : X — R, can be
computed using a registration algorithm such as Large Deformation Diffeomorphic Metric Mapping
(LDDMM) [2]:

1 1
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The Hilbert space’s inner product provides the structure of a Riemannian manifold, which allows
us to compute distances (giving a metric space), angles, and straight lines (geodesics). The solution
to the LDDMM algorithm is always a geodesic, which obeys the E P Diff equation (Euler-Poincare
equation on the group of diffeomorphisms) [3]:

%[L*Lv] = —(D[L*Lv}v + [L* Lv]dive + DvT [L* Lv]) .

3 Statistical shape analysis

A distance between two shapes immediately gives us the ability to define an average: the shape that
minimizies sum of square distances to a population [4]:

N
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When data is indexed to time, geodesic regression can be used to find the curve that minimizes
sum of square distance to a population [5].

The initial condition to the E P Diff equation lies in a vector space, and is amenable to covariance
analysis techniques such as principal components [6].

These techniques can be used to analyze populations and timeseries of imaging data.

4 Biomarkers of neurodegeneration

At large scales diffeomorphic transformations can be used to define volume differences, or volume
differences for specific anatomical regions.

At small scales, volume changes are decomposed into Jacobian determinants at each voxel. For
cortical surfaces, they are further decomposed into normal and tangential components. This is
known as morphometry [7].

In neurodegeneration, patterns of atrophy in populations are quantified using Jacobian determi-
nants of diffeomorphisms at each voxel. These are modeled statistically, and regions where atrophy
occurs more strongly than normal aging are identified. Hypothesis testing testing that controls for
multiple comparisons, such as permutation testing, is essential [8].

Among other studies, we are using these techniques to quantify neurodegeneration in early
Alzheimer’s disease. These patterns of change can be detected in imaging in the trans entorhi-
nal cortex, long before symptoms appear [9]. We are working to validate this biomarker of disease
using post mortem imaging and histology [10].



5

Conclusion

Biological shape differences are modeled using the diffeomorphism group. Diffeomorphisms are
estimated from imaging data using image registration algorithms.

Because they lie on a Riemannian manifold, statistical techniques such as averages, regression,

or principal component analysis can be employed to study populations and timeseries of biological
shapes.

In morphometry, Jacobian determinants are used to quantify biologically meaningful patterns of

growth or atrophy.

These techniques are commonly applied to the study of neurodegeneration, where statistical

models can identify regions that discriminate between disease and normal aging.

References

[1]

2]

[10]

U. Grenander and M. I. Miller, “Computational anatomy: An emerging discipline,” Quarterly
of applied mathematics, vol. 56, no. 4, pp. 617-694, 1998.

M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, “Computing large deformation metric
mappings via geodesic flows of diffeomorphisms,” International journal of computer vision,
vol. 61, no. 2, pp. 139-157, 2005.

M. I. Miller, A. Trouvé, and L. Younes, “Geodesic shooting for computational anatomy,” Journal
of mathematical imaging and vision, vol. 24, no. 2, pp. 209-228, 2006.

J. Ma, M. I. Miller, A. Trouvé, and L. Younes, “Bayesian template estimation in computational
anatomy,” Neurolmage, vol. 42, no. 1, pp. 252-261, 2008.

D. J. Tward, C. S. Sicat, T. Brown, A. Bakker, and M. I. Miller, “Reducing variability in
anatomical definitions over time using longitudinal diffeomorphic mapping,” in International
Workshop on Spectral and Shape Analysis in Medical Imaging, pp. 51-62, Springer, Cham, 2016.

D. Tward, M. Miller, A. Trouve, and L. Younes, “Parametric surface diffeomorphometry for low
dimensional embeddings of dense segmentations and imagery,” IEEFE transactions on pattern
analysis and machine intelligence, vol. 39, no. 6, pp. 1195-1208, 2016.

J. Ashburner and K. J. Friston, “Voxel-based morphometrythe methods,” Neuroimage, vol. 11,
no. 6, pp. 805-821, 2000.

T. Nichols and S. Hayasaka, “Controlling the familywise error rate in functional neuroimaging:
a comparative review,” Statistical methods in medical research, vol. 12, no. 5, pp. 419-446, 2003.

D. J. Tward, C. S. Sicat, T. Brown, A. Bakker, M. Gallagher, M. Albert, and M. Miller, “En-
torhinal and transentorhinal atrophy in mild cognitive impairment using longitudinal diffeo-
morphometry,” Alzheimer’s €& Dementia: Diagnosis, Assessment € Disease Monitoring, vol. 9,
pp. 41-50, 2017.

D. J. Tward, T. Brown, Y. Kageyama, J. Patel, Z. Hou, S. Mori, M. Albert, J. Troncoso,
and M. Miller, “Diffeomorphic registration with intensity transformation and missing data:
Application to 3d digital pathology of alzheimer’s disease,” BioRziv, p. 494005, 2019.



