

AUC

LEARNED IMAGE RECONSTRUCTION FOR HIGH RESOLUTION TOMOGRAPHIC IMAGING

Andreas Hauptmann

University of Oulu

Research Unit of Mathematical Sciences

&

University College London Centre for Medical Image Computing Department of Computer Science

2019 AAPM Annual Meeting, San Antonio, 18 July 2019

Simon Arridge, Paul Beard, Marta Betcke, Ben Cox, and Nam Huyhn, Vivek Muthurangu, and Jennifer Steeden (UCL), Felix Lucka (CWI), Jonas Adler and Ozan Öktem (KTH)

PROBLEM FORMULATION

We consider the setting with:

True unknown $x_{true} \in X$ Measured data $y \in Y$ Forward operator $\mathcal{A}: X \to Y$

Then the measurement is given by

 $y = \mathcal{A}(x_{true}) + \delta y.$

Given the measurement y we aim to find a mapping $\mathcal{F}^{\dagger}: Y \to X$, such that

 $\mathcal{F}^{\dagger}(y) \approx x_{true}.$

We aim to parametrise the mapping $\mathcal{F}_{\theta}^{\dagger} : Y \to X$, with some parameter set θ .

 \Rightarrow Find an optimal set of parameters, such that

 $\mathcal{F}^{\dagger}_{\theta}(y) \approx x_{true}.$

لی UNIVERSITY OF OULU

MODEL ENFORCED RECONSTRUCTION

Direct reconstruction followed by learning based post-processing.

Reconstruction is carried out using a simple/fast inversion step.

Given a reconstruction operator $\mathcal{A}^{\dagger} : Y \to X$, then we apply $\mathcal{F}_{\theta}^{\dagger} = \mathcal{G}_{\theta} \circ \mathcal{A}^{\dagger}$ where $\mathcal{G}_{\theta} : X \to X$ is typically a sophisticated CNN.

Post-processing is used to remove artefacts and noise.

A DEEP CNN FOR LOW-DOSE X-RAY CT [KANG ET AL., MEDICAL PHYSICS, 2017]

- Reconstruction by FBP
- Decomposition into Wavelet coefficients
- Learned denoising of coefficients
- 2nd place at the 2016 AAPM low-dose CT Grand Challenge

FBPConvNet [JIN ET AL., IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017]

- Reconstruction by FBP
- Learned denoising of reconstructed image
- Residual U-Net architecture

MODEL BASED RECONSTRUCTION

Forward and adjoint operator are used directly

Typically done in an iterative approach

In this case we learn an iterative update

$$x_{k+1} = \mathcal{G}_{\theta}(\nabla d(y, Ax_k), x_k),$$

where $d(y, Ax_k)$ denotes the data-fit and $\mathcal{G}_{\theta} : X \times X \to X$ is typically a simple CNN.

LUC

LEARNED PRIMAL-DUAL RECONSTRUCTION [ADLER & ÖKTEM, IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018]

- Learned iterative reconstruction
- Learning in image (primal) and data (dual) domain

CARDIOVASCULAR MAGNETIC RESONANCE IMAGING

Forward model: Fourier transform \mathcal{F}_k

Data given in k-space: $y = \mathcal{F}_k x$

Reconstruction by inverse Fourier transform: $\mathcal{F}_k^{-1} y$

- ▶ Gold-standard taken under breath-hold, ~10 seconds
- Need for real-time imaging for pediatric imaging

Gold-standard breath-hold

REAL-TIME IMAGING IN CMR AND DEEP LEARNING

K-space data

Pro:

- Fast reconstruction and post-processing
- > Training with magnitude images possible

Contra:

Many samples needed for training

> Artefacts ideally to be noise-like

LUC

 \sim \sim

UNIVERSITY OF OULU

- Trained to minimise the l²-loss of output to the desired ground truth (or possible l¹-loss)
- > 2276 (2D+time) data sets from ~250 patients
- Real-time data 13x accelerated, simulated from magnitude images

UCL

COMPARISON OF RADIAL SAMPLING PATTERNS

- Nature of artefacts is crucial for learning task
- Test of radial rotating/nonrotating sampling patterns

UCL

COMPARISON OF RADIAL SAMPLING PATTERNS

RMSE (x10 ⁻²)	8.0 ± 1.5 *	4.9 ± 1.0 *	8.4 ± 1.6 *	4.2 ± 1.3
SSIM	0.64 ± 0.04 *	0.83 ± 0.03 *	0.63 ± 0.05 *	0.87 ± 0.03

CLINICAL STUDY

tGA radial bSSFP

R = 13 - 14 spokes

1.7mm - 36ms

10 CHD patients

Same Dx as training

Learned reconstruction

GRASP reconstruction

Compare to conventional BH

CLINICAL STUDY: RECONSTRUCTIONS

BH bSSFP

GRASP RT-radial

U-Net RT-radial

UCL

CLINICAL STUDY: VENTRICULAR VOLUMES

	Mean ± Standard deviation					
	BH-bSSFP	RT GRASP	RT U-Net			
LV EDV (mL)	148 ± 44	143 ± 44	151 ± 46			
LV ESV (mL)	56 ± 27	60 ± 29*	58 ± 29			
LV EF (%)	64 ± 10	60 ± 11*†	63 ± 11			
RV EDV (mL)	213 ± 97	198 ± 89*†	204 ± 92			
RV ESV (mL)	92 ± 49	89 ± 48	91 ± 47*			
RV EF (%)	58 ± 7	57 ± 6	57 ± 6			

* Values are significantly different from BH-bSSFP (p<0.05)

[†] Values are significantly different from RT U-Net (p<0.05)

[Hauptmann et al., Magnetic Resonance in Medicine, 2019]

UCL

WHEN TO CONSIDER POST-PROCESSING?

- If artefacts are incoherent in time:
 CNN learns interpolation in time
- If artefacts are not noise-like:
 CNN needs to rely on features
 learned from the training data
- Model knowledge needed to design a robust learning task!

MODEL BASED RECONSTRUCTIONS

- Model-based iterative reconstructions are shown to outperform post-processing approaches:
 - Especially if artefacts are not noise-like/spatially correlated:
 - Streaking artefacts/limited-view in CT
- Typically these iterative methods are trained end-to-end, i.e.

data	to	final	iterate.
uala	ιU	IIIIai	

Method	PSNR (dB)	SSIM	Runtime (ms)	Parameters		
FBP	19.75	0.597	4	1		
TV	28.06	0.928	5166	1		
Learned U-Net	29.20	0.943	9	10 ⁷		
Learned Gradient Desc	ent 32.02	-	-	-		
Learned Primal-Dual	38.28	0.988	49	$2.4 \cdot 10^5$		

[Adler&Öktem, 2017&2018]

PROBLEM WITH END-TO-END TRAINING?

- End-to-end training is not feasible for large image size:
 - Either due to memory limitation, with 12GB GPU we can train 1024x1024 in 2D or 256x256x16 in 3D.
 - Or Computational cost during training, due to multiple application of forward operator

Possible solution: Greedy training of each iterate separately.

> That way we can separate evaluation of forward operator from the training task.

UCL

A GREEDY APPROACH

Classical variational approach: Find x from measurement y as a minimiser of:

$$x \in rgmin_{x'} \left\{ J(x')
ight\} = rgmin_{x'} \left\{ \mathcal{D}(x;g) + \lambda R(x')
ight\}.$$

$$\mathcal{D}(x_k;g) = rac{1}{2} \|Ax_k - y\|_2^2$$

and
 and
 $abla \mathcal{D}(x_k;g) = A^*(Ax_k - y).$

Instead of solving explicitly by proximal gradient descent

$$x_{k+1} = \operatorname{prox}_{R,(\lambda\gamma_{k+1})} (x_k - \gamma_{k+1} \nabla \mathcal{D}(x_k;g)),$$

we propose to find a function (formulated as CNN) such that

$$x_{k+1} = G_{ heta_k}(
abla \mathcal{D}(x_k;g),x_k).$$

UCL

EXAMPLE: PHOTOACOUSTIC TOMOGRAPHY

Fabry Perot polymer film ultrasound sensor is a planar Dichroid Fabry-Perot interferometer mirrors sensor head Polymer space Excitation light Sensor Acoustically-induced thickness (600-1200nm) interrogation beam changes are detected optically Sensor X-V interrogation

scanner

beam (1550nm)

- Standard method is a raster scan: sequentially interrogate all pixels
- Interrogate sensor with patterns instead
 Compressed Sensing

[Jathoul et al., Nature Photonics, 2015]

^AUCL

TRAINING ON VESSEL PHANTOMS

- Trained to minimise the ℓ^2 -distance of new iterate x_{k+1} to the true solution
- With the computation of the gradient, total training time for 5 iterations takes 7 days
- \blacktriangleright Compare: End-to-end training would take about \sim 140 days

APPLICATION TO HUMAN IN-VIVO MEASUREMENTS

- Reduces reonstruction time by a factor 4 (by reduction of iterations)
- Considerably improves reconstruction quality

Reference Fully-sampled data

Learned Reconstruction 4x sub-sampled, 5 Iterations, Time: 2.5 min., PSNR: 41.40

[Hauptmann et al., IEEE Transactions on Medical Imaging, 2018]

Total Variation Reconstruction 4x sub-sampled, 20 Iterations, Time: 10 min., PSNR: 38.05

ACCELERATION BY USING AN APPROXIMATE MODEL

• Reduces reonstruction time by another factor of ~ 8 ($\rightarrow 32x$ compared to TV)

Reference Fully-sampled data

Learned Reconstruction 4x sub-sampled, 5 Iterations, Time: 20 sec., PSNR: 42.18

Total Variation Reconstruction 4x sub-sampled, 20 Iterations, Time: 10 min., PSNR: 41.16

[Hauptmann et al., Machine Learning for Medical Image Reconstruction, 2018]

UCL

ANOTHER SOLUTION: A MULTISCALE APPROACH

To save memory and computation time: Compute only final iterate in full resolution

Discretisation space: $S_i = \{X_i, Y_i\}, i \in \{0, \dots, N\}$

Reconstructed image and data: $\{x_i, y_i\} \in S_i$

The desired finest resolution is $S_N = \{X_N, Y_N\} = \{X, Y\}$

Corresponding forward and adjoint operators: $\mathcal{A}_i : X_i \to Y_i$ and $\mathcal{A}_i^* : Y_i \to X_i$

Projection and upsampling operator:

 $\pi_i: S_N \to S_i \text{ and } \tau: S_{i-1} \to S_i \text{ for } i \in \{1, \ldots, N\}.$

UCL

MULTI SCALE LEARNED GRADIENT DESCENT

We compute the gradient for each iterate by

$$\nabla \mathcal{D}_i(x_i;g) := \mathcal{A}_i^* \left(\mathcal{A}_i(x_i) - \pi_i(y) \right).$$

The update is then performed by

$$\begin{cases} x_i = \mathcal{G}_{\theta_i}(\widetilde{x}_i, \nabla \mathcal{D}_i(\widetilde{x}_i; y)) \\ \widetilde{x}_{i+1} = \tau(x_i). \end{cases}$$

Algorithm 1 Multi-scale learned gradient descent (MS-LGD)

1: for
$$i = 0, ..., N$$
 do
2: if $i = 0$ then

3:
$$\widetilde{x}_0 \leftarrow \mathcal{A}_0^{\dagger} \pi_0(y)$$

4: **else**

5:
$$\widetilde{x}_i \leftarrow \tau(x_{i-1})$$

6: end if 7: $x_i \leftarrow \mathcal{G}_{\theta_i}(\widetilde{x}_i, \nabla \mathcal{D}_i(\widetilde{x}_i; y))$ 8: end for

8: end for

9: $x^* \leftarrow x_N$

MULTI SCALE LEARNED FILTERED GRADIENT DESCENT

Due to upsampling we lose high-frequency components, especially in the last iterate.

Additionally we compute a filtered version of the gradient by substituting the adjoint with the filtered backprojection:

$$\nabla^{\dagger} \mathcal{D}_i(x_i; y) := \mathcal{A}_i^{\dagger} \left(\mathcal{A}_i(x_i) - \pi_i(y) \right)$$

Algorithm 2 Multi-scale learned filtered gradient descent (MS-LFGD)

1: for
$$i = 0, ..., N$$
 do
2: if $i = 0$ then
3: $\widetilde{x}_0 \leftarrow \mathcal{A}_0^{\dagger} \pi_0(y)$
4: else
5: $\widetilde{x}_i \leftarrow \tau(f_{i-1})$
6: end if
7: $\widetilde{x}_{res} \leftarrow \mathcal{A}_i(\widetilde{x}_i) - \pi_i(y)$
8: $\nabla \mathcal{D}_i(\widetilde{x}_i; y) \leftarrow \mathcal{A}_i^*(x_{res})$
9: $\nabla^{\dagger} \mathcal{D}_i(\widetilde{x}_i; y) \leftarrow \mathcal{A}_i^{\dagger}(x_{res})$
10: $x_i \leftarrow \mathcal{G}_{\theta_i}(\widetilde{x}_i, \nabla \mathcal{D}_i(\widetilde{x}_i; y), \nabla^{\dagger} \mathcal{D}_i(\widetilde{x}_i; y))$
11: end for
12: $f^* \leftarrow f_N$

A SCALABILITY STUDY ON SIMULATED DATA

- We create phantoms of random ellipses
- Test algorithms for increasing image size
- Fan-beam geometry, 512 angles, 0.05% Gaussian noise
- Test following algorithms:
 - Learned Gradient Descent (LGD)
 - Post-processing with U-Net
 - Multi-scale Learned Gradient Descent (MS-LGD)
 - Multi-scale Learned filtered Gradient Descent (MS-LFGD)

UNIVERSITY OF OULU

UCL

A SCALABILITY STUDY: RESULTS

Test on a single NVIDIA Titan XP GPU (12GB)

、レ で
づ UNIVERSITY OF OULU

UCL

RECONSTRUCTION WITH MS-LFGD (1536X1536)

Phantom

MS-LFGD

APPLICATION TO HUMAN PHANTOMS

We use the database supplied by Mayo Clinic for the AAPM Low Dose CT Grand Challenge

- Data is simulated following the Beer-Lamberts law with Poisson noise
- Training on 9 patients with 2168 slices of size 512x512
- Testing on 1 patient with 210 slices

We consider three setups of increasing difficulty:

	Angles	Photon count	Scales	Angles per Scale
Case 1	600	8000	5	600, 300, 150, 75, 37
Case 2	240	6000	5	240, 120, 60, 30, 30
Case 3	120	5000	5	120, 60, 30, 30, 30

NETWORK AND TRAINING DETAILS

- Networks are trained for 50,000 iterations (end-to-end), 5 iterates/scales
- Minimise ℓ^2 -distance to full-dose scan
- Sub-networks consist of a residual mini U-Net

U-Net

UCL

RECONSTRUCTION RESULTS, U-NET

Full-dose scan

MS-LGD

RECONSTRUCTION RESULTS, MS-LGD

Full-dose scan

ሮማ UNIVERSITY OF OULU

UCL

RECONSTRUCTION RESULTS, MS-LFGD

Full-dose scan

LGD

UCL

RECONSTRUCTION RESULTS, LGD

Full-dose scan

QUANTITATIVE RESULTS

	600 angles		240	angles	120 angles		
PSNR		SSIM	PSNR	SSIM	PSNR	SSIM	
LGD (MINI U-NET)	43.57 ±1.22	0.964 ± 0.0033	41.36 ±1.22	0.953 ± 0.0039	39.45 ±1.23	0.938 ± 0.0054	
U-NET	42.24 ± 1.50	0.957 ± 0.0044	40.41 ± 1.38	0.944 ± 0.0031	38.03 ± 1.32	0.901 ± 0.0053	
MS-LGD	42.55 ± 1.26	0.958 ± 0.0033	39.73 ±1.33	0.938 ± 0.0044	37.16 ±1.39	0.913 ± 0.0065	
MS-LFGD	43.34 ± 1.22	0.963 ± 0.0034	40.80 ± 1.24	0.947 ± 0.0040	38.30 ± 1.26	0.926 ± 0.0061	

		600 angles		240 angles		120 angles	
	MEMORY	TRAIN.	EXEC.	TRAIN.	EXEC.	TRAIN.	EXEC.
LGD (MINI U-NET)	3042MB	13h40m	0.32s	10h10m	0.21s	5h25m	0.16s
U-NET	3784MB	6h45m	0.19s	4h35m	0.09s	3h50m	0.057s
MS-LGD	980MB	5h35m	0.06s	3h25m	0.05s	2h30m	0.049s
MS-LFGD	980MB	11h15m	0.23s	6h15m	0.12s	4h20m	0.089s

UCL

RECONSTRUCTION ON MULTIPLE SCALES

Reduces memory consumption of learned iterative reconstructions

- Possible to train end-to-end
- Faster with competitive results

[Hauptmann, Adler, Arridge, Öktem, to be submitted (soon)]

CONCLUDING REMARKS

- Use model knowledge to simplify the training task
- Post-processing can be advised if artefacts are highly incoherent (noise-like)
 Include temporal domain
- For geometrically restricted problems or correlated artefacts, feeding back model information iteratively is essential
- Speed up possible by using approximate/faster models
- End-to-end training possible by multi-scale approach

Engineering and Physical Sciences Research Council

Thank you for your attention