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We consider the setting with: Given the measurement y we aim to find a mapping
FT:1Y — X, such that

True unknown  Xgpe € X T
Measured data y e Y F'(y) = Xtrue-

Forward operator A : X — Y _ _ _ '
We aim to parametrise the mapping F, : Y — X,

Then the measurement is given by with some parameter set 0.

y = A(Xtrue) + 0Oy. = Find an optimal set of parameters, such that

]:g(}/) ~ Xtrue-
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MODEL ENFORCED RECONSTRUCTION

Direct reconstruction followed by Given a reconstruction operator A" : Y — X, then we apply
learning based post-processing.
Fl=GpoAl
Reconstruction is carried out using

: : : h : X — X is typicall histicated CNN.
a simple/fast inversion step. where Gy Is typically a sophisticate

Post-processing is used to remove
artefacts and noise.
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A DEEP CNN FOR LOW-DOSE X-RAY CT

[KANG ET AL., MEDICAL PHYSICS, 2017]
« Reconstruction by FBP e
v !llll |
e Mot O bk N
- Decomposition info SEFTNY KT

Wavelet CoeﬁiCientS level 4 level 3 level2 level 1
. . ® : Conv
 Learned denoising of #: v
coefficients o |
M'”'“'_,é). L{ Module - Module

. 2nd place at the 2016 |
AAPM low-dose CT Grand
Challenge
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2N

FBPConvNet

[JIN ET AL., IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017]

ry

FI;P (spaTse ;te:vsl Subsampled Sinogram Skip connection Sinogra‘m FBI-;{f;i‘I v;ews)
* Reconstruction by FBP T, I
U-net
* Learned denoising of 4LH- |-+
reconstructed image S
spatial dimension:512x512
 Residual U-Net architecture +” AR
.[ 256 x 256

*

256 256 | > 3x3conv.+BN

N +I + ReLU

v 2Xx2max pooling

128 256 256
A
128 x 128

skip connection

256" 512 512 1024 :
and concatenation
64x64[ ._’-+_ 1 ” * 3x3up-conv2.
512 v 1024 [ 1024 +BN +RelU
32x32 I - I > B -+ 1x1conv.
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MODEL BASED RECONSTRUCTION

Forward and adjoint operator | In this case we learn an iterative update
are used directly
Xk+1 = g@(vd(y AXk), Xk):

Typically done in an Iterative where d(y, Axx) denotes the data-fit and Gy : X x X — X is
approach . .
typically a simple CNN.

K-times D
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LEARNED PRIMAL-DUAL RECONSTRUCTION
[ADLER & OKTEM, IEEE TRANSACTIONS ON MEDICAL IMAGING, 201 8]

« Learned iterative
reconstruction

« Learning in image
(primal) and data
(dual) domain

®» 3x3 conv + PRelLU
B 3x3 conv
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CARDIOVASCULAR MAGNETIC RESONANCE IMAGING

Forward model: Fourier transform Fj
Data given in k-space: y = Fix

Reconstruction by inverse Fourier trans-
form: Fk_ly

» Gold-standard taken under
breath-hold, ~10 seconds

» Need for real-time imaging for
pediatric imaging

18 July 2019

Gold-standard breath-hold
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REAL-TIME IMAGING IN CMR AND DEEP LEARNING

K-space data

Direct reconstruction
F. 1

Pro: Contra:

» Fast reconstruction and post-processing | | » Many samples needed for training

» Training with magnitude images possible | | » Artefacts ideally to be noise-like

18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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NETWORK ARCHITECTURE AND TRA|N|NG

3D residual U-Net architecture

W“WMMMMM“MM%

32 32 1

32" 64 64 128 64

I I I I-I-I ‘.‘RLU(coan 33333 )

64 ¥ 128 128'

CCCCC

lIDddt
32x32Xx5 > RelU

> Trained to minimise the #%-loss of output to the desired ground truth
(or possible #1-loss)

» 2276 (2D+time) data sets from ~250 patients

» Real-time data 13x accelerated, simulated from magnitude images
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COMPARISON OF RADIAL SAMPLING PATTERNS

Fr1 Overlaid Frames

» Nature of artefacts is
crucial for learning task

HEGI"IO

» Test of radial rotating/non-
rotating sampling patterns

HEGrot

¥
%

tGArot

el g
Y

%%%%
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COMPARISON OF RADIAL SAMPLING PATTERNS
| rec QN ReGn

RMSE (x10?) 80+15"* 49+10* 84+16* 42+13
SSIM 0.64 +0.04* 0.83+0.03* 0.63+0.05* 0.87 +0.03
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CLINICAL STUDY

tGA radial bSSFP

R =13 - 14 spokes

1.7/mm - 36ms

Learned reconstruction

18 July 2019

10 CHD patients

Age = 33.6+16.8 years

Same Dx as training

GRASP reconstruction

Compare to
conventional BH
ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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CLINICAL STUDY: RECONSTRUCTIONS

BH bSSFP GRASP RT-radial U-Net RT-radial

18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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CLINICAL STUDY: VENTRICULAR VOLUMES

I T —
_ BH-bSSFP RT GRASP RT U-Net
148 + 44 143 £ 44 151 £ 46

56 £ 27 60 £ 29* 58 + 29

LV EF (%) 64 + 10 60 £ 11** 63 +11

213 +97 198 + 89*7 204 £ 92

92 +£49 89 +48 91 + 47*

RV EF (%) 587 576 576

* Values are significantly different from BH-bSSFP (p<0.05)
T Values are significantly different from RT U-Net (p<0.05)
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WHEN TO CONSIDER POST-PROCESSING?

» If artefacts are incoherent in time:
CNN learns interpolation in time

» |If artefacts are not noise-like:
CNN needs to rely on features
learned from the training data

-
=
cl
=]
<
g
)
- !

» Model knowledge needed to
design a robust learning task!

tGArot
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MODEL BASED RECONSTRUCTIONS

 Model-based iterative reconstructions are shown to
outperform post-processing approaches:
» Especially if artefacts are not noise-like/spatially
correlated:
« Streaking artefacts/limited-view in CT

« Typically these iterative methods are trained end-to-end, I.e.
data to final iterate.

Method PSNR (dB) SSIM  Runtime (ms) Parameters
FBP 19.75 0.597 4 1
TV 28.06 0.928 5166 1
Learned U-Net 2020 0.943 9 107
Learned Gradient Descent 32.02 - - -
Learned Primal-Dual 38.28 0.988 49 94 .70°

18 July 2019 [Ad Ier'8‘Ok1.eml 20] 7&20 ] 8] ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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PROBLEM WITH END-TO-END TRAINING?

* End-to-end training is not feasible for large image size:

» Elther due to memory limitation, with 12GB GPU we can train
1024x1024 in 2D or 256x256x16 in 3D.

» Or Computational cost during training, due to multiple application of forward
operator

Possible solution: Greedy training of each iterate separately.
» That way we can separate evaluation of forward operator from the training task.

18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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A GREEDY APPROACH

Classical variational approach: Find x from measurement y as a D(xk; g) = 2|1 Ax — vli5

minimiser of:
and

x € argmin {J(x')} = argxr!nin {D(x;g) + AR(X") }.

X!

VD(xk; g) = A"(Axk — y).

Instead of solving explicitly by proximal gradient descent

Xk+1 = PrOXR (Av,41) (Xk — +1VD(xk; 8)) -

we propose to find a function (formulated as CNN) such that

Xk4+1 — G@;( (VD(Xk, g)* Xk)-

18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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EXAMPLE: PHOTOACOUSTIC TOMOGRAPHY

« Fabry Perot polymer film

ultrasound sensor is a planar
interferometer
f e\

Sensor

interrogation

beam
\

« Standard method is a raster scan: sequentially interrogate all
pixels

h Fabry-Perot
sensor head
—r Excitation
light
(600-1200nm)
<«— Sensor

Xy : .
scanner == interrogation
beam (1550nm)

« Acoustically-induced thickness
changes are detected optically

 Interrogate sensor with patterns instead
» Compressed Sensing

18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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TRAINING ON VESSEL PHANTOMS

» Trained to minimise the (?-distance of new iterate x,; to the
true solution

» With the computation of the gradient, total training time for
5 iterations takes 7 days

» Compare: End-to-end training would take about ~140 days

Xk+1 = GQ;( (VD(X}(, g)* Xk)'

§ 240x%240x80

Tommp 16 |jmp 32

240x240x80

32 E 16 P 1 —Pe nn

240x240x80

mm) RelU(convs,sxs)
Vd(y, Ar;)mmp| 16 s 32 ) A-(con\fsxsxz)x

=) Rel.U

E==p> skip connection
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APPLICATION TO HUMAN IN-VIVO MEASUREMENTS

* Reduces reonstruction time by a factor 4 (by reduction of iterations)
 Considerably improves reconstruction quality

Reference Learned Reconstruction Total Variation Reconstruction
Fully-sampled data 4x sub-sampled, 5 lterations, 4x sub-sampled, 20 lterations,
Time: 2.5 min., PSNR: 41.40 Time: 10 min., PSNR: 38.05

[Hauptmann et al., IEEE Transactions on Medical Imaging, 201 8]

18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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ACCELERATION BY USING AN APPROXIMATE MODEL

» Reduces reonstruction time by another factor of ~8 ( = 32x compared to TV)
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Reference Learned Reconstruction Total Variation Reconstruction
Full moled dat 4x sub-sampled, 5 lterations, 4x sub-sampled, 20 lterations,
PR Time: 20 sec., PSNR: 42.18 Time: 10 min., PSNR: 41.16

14 mm x 14 mm

4.5 mm

[Hauptmann et al., Machine Learning for Medical Image Reconstruction, 201 8]
18 July 2019
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ANOTHER SOLUTION: A MULTISCALE APPROACH

To save memory and computation time: Compute only final iterate in full resolution

Discretisation space: S; = {X;, Y;}, i €{0,...,N}

4

Reconstructed image and data: {x;,y;} € S

The desired finest resolution is Sy = { Xy, Y} = {X, Y}

Corresponding forward and adjoint operators:
Ai Xi — Yiand A7 1 Y — X;

Projection and upsampling operator:

TSy —S and T1:5_1—S5; fOI’I'E{l....?N}.

4

18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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MULTI SCALE LEARNED GRADIENT DESCENT

Algorithm 1 Multi-scale learned gradient descent (MS-LGD)
I: for i =0,..., N do

We compute the gradient for each iterate by

VDi(xi; g) = A7 (Ai(xi) — mi(y)) - > if i =0 then
3: Ty AE ?To(y)
) 4 else
The update is then performed by . % — (i)
- - 6 end if
— 8: end for
Xir1 = T(xj). 0 2%  n
[terate O [terate 1 [terate N
r-r—-——~>"~"=>—=>—=—=—=>—=—=—=——=—=—™7 r—"—~"~"~"~~>~>~>~>""—"=>"=—7=—7=== | r-r-———=>—=>—=—=—=—=—=>"=>"=—=—=—=—% 1
I [ | | |
I L - I I
| o -»[ Ga, ]-» zo (= 1 -»[ Go, ]-» z1 == = Iy -»[ Gon ]-TN :
I I 1 | |
I [ | | |
| LV’DO J : vapl J : : LVDNJ :
e ol mm mm mm mm mm mm Em Em Em Em Em Em Em Em Em Em Em o L o oo o oo oo o o o mm mm mm mm mm e e mm mm e o
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MULTI SCALE LEARNED FILTERED GRADIENT DESCENT

Due to upsampling we lose high-frequency Algorithm 2 Multi-scale learned filtered gradient descent
components, especially in the last iterate.  (MS-LFGD)

2: if 2 :.O theq
: jfo — A(T) ?T[)('y)

i : : else
Additionally we compute a filtered version 5o (i)

;
4
3:
of the gradient by substituting the adjoint 6:  end if
with the filtered backprojection: T Tres < Ai(Ti) —mi(y)
8: VD, (z;:y) + A (20s)
ViDi(xi;y) = A}L (Ai(x;) — mi(y)) 90 VIDi(F;1y) — Al(2res)
10: @ < Go, (T, VDi(Z439), VID;(74;y))
11: end for
12: f* « fn
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A SCALABILITY STUDY ON SIMULATED DATA

« \We create phantoms of random ellipses
« Test algorithms for increasing image size
* Fan-beam geometry, 512 angles, 0.05% Gaussian noise

» Test following algorithms:
* Learned Gradient Descent (LGD)
* Post-processing with U-Net
* Multi-scale Learned Gradient Descent (MS-LGD)
« Multi-scale Learned filtered Gradient Descent (MS-LFGD)

18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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A SCALABILITY STUDY: RESULTS

Test on a single NVIDIA Titan XP GPU (12GB)

Training memory

Training time

12196 | ‘ 60 [ o
i . .‘: ’ i ) d
7,7 24 0~
a 4
< = |
g 1000 ——LGD & 6l
= —e—U-Net || =
= g MSLGD || o —e—|_GD
. -0~ MSLFGD| | — U-Net
ot 7" T T O | | MSLGD
N A 12GB | N -6 MSLFGD] |
128 256 512 1024 2048 128 256 512 1024 2048
Image size: NxN Image size: NxN

18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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RECONSTRUCTION WITH MS-LFGD (1536X1536)

Phantom FBP MS-LFGD

R .
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APPLICATION TO HUMAN PHANTOMS

We use the database supplied by Mayo Clinic for the AAPM Low Dose CT Grand

Challenge

« Data is simulated following the Beer-Lamberts law with Poisson noise
« Training on 9 patients with 2168 slices of size 512x512
« Testing on 1 patient with 210 slices

We consider three setups of increasing difficulty:

Angles | Photon count | Scales | Angles per Scale
Case 1 600 8000 5 600, 300, 150, 75, 37
Case 2 240 6000 5 240, 120, 60, 30, 30
Case 3 120 5000 5 120, 60, 30, 30, 30

18 July 2019
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NETWORK AND TRAINING DETAILS

* Networks are trained for 50,000 iterations (end-to-end), 5 iterates/scales
« Minimise #4-distance to full-dose scan

 Sub-networks consist of a residual mini U-Net

2 32 32 64 32 32 1
X
= [ = [ e— W = = X
VD."(XI; g) L 4

32‘.' 64 64 64* B ReLU(conviysys) M concat
¥ maxpool,,, o) addition
|:I-I~I-If ReLU(convtz,syx3) = RelU
) CONVgyqys3
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RECONSTRUCTION RESULTS, U-NET

Full-dose scan FBP U-Net

[-300, 300]HU
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RECONSTRUCTION RESULTS, MS-LGD

Full-dose scan FBP MS-LGD

[-300, 300]HU
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RECONSTRUCTION RESULTS, MS-LFGD

Full-dose scan FBP MS-LFGD

[-300, 300]HU
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RECONSTRUCTION RESULTS, LGD

Full-dose scan FBP LGD

[-300, 300]HU
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600 angles 240 angles 120 angles
PSNR SSIM PSNR SSIM PSNR SSIM
LGD (MINI U-NET) | 43.57 +=1.22 | 0.964 +£0.0033 | 41.36 =1.22 | 0.953 +0.0039 | 39.45 £1.23 | 0.938 4+0.0054
U-NET 4224 £1.50 | 0.957 £0.0044 | 40.41 =1.38 | 0.944 +£0.0031 | 38.03 +1.32 | 0.901 £0.0053
MS-LGD 42.55 £1.26 | 0.958 £0.0033 | 39.73 =1.33 | 0.938 £0.0044 | 37.16 +1.39 | 0.913 £0.0065
MS-LEGD 43.34 £1.22 | 0.963 £0.0034 | 40.80 =1.24 | 0.947 £0.0040 | 38.30 £=1.26 | 0.926 40.0061
600 angles 240 angles 120 angles

MEMORY | TRAIN. | EXEC. | TRAIN. | EXEC. | TRAIN. | EXEC.

LGD (MINI U-NET) | 3042MB 13h40m | 0.32s 10h10m | 0.21s 5h25m 0.16s

U-NET 3784MB 6h45m 0.19s 4h35m 0.09s 3h50m | 0.057s

MS-LGD 980MB 5h35m 0.06s 3h25m 0.05s 2h30m | 0.049s

MS-LFGD 980MB 11ThI5m | 0.23s 6h15m 0.12s 4h20m | 0.089s

18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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RECONSTRUCTION ON MULTIPLE SCALES

Reduces memory
consumption of learned
iterative reconstructions

Filtered Gradient

» Possible to train end-to-end

» Faster with competitive
results

[Hauptmann, Adler, Arridge, Oktem, to be submitted (soon)]
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» Use model knowledge to simplify the training task

» Post-processing can be advised if artefacts are highly
incoherent (noise-like)
= Include temporal domain

» For geometrically restricted problems or correlated artefacts,
feeding back model information iteratively is essential

» Speed up possible by using approximate/faster models

» End-to-end training possible by multi-scale approach

18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION
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EPSRC

Engineering and Physical Sciences
Research Council

Wl ciri/ <

riish Hear k SUTO pvIDIA.

Thank you for your attention
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