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MODEL ENFORCED RECONSTRUCTION
Direct reconstruction followed by 
learning based post-processing. 

Reconstruction is carried out using 
a simple/fast inversion step.

Post-processing is used to remove 
artefacts and noise.

𝐴† CNN
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A DEEP CNN FOR LOW-DOSE X-RAY CT
[KANG ET AL., MEDICAL PHYSICS, 2017]

• Reconstruction by FBP

• Decomposition into 

Wavelet coefficients

• Learned denoising of 

coefficients

• 2nd place at the 2016 

AAPM low-dose CT Grand 

Challenge



18 July 2019 ANDREAS HAUPTMANN: LEARNED IMAGE RECONSTRUCTION

FBPConvNet
[JIN ET AL., IEEE TRANSACTIONS ON IMAGE PROCESSING , 2017]

• Reconstruction by FBP

• Learned denoising of 

reconstructed image

• Residual U-Net architecture
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MODEL BASED RECONSTRUCTION

Forward and adjoint operator 

are used directly

Typically done in an iterative 

approach

𝐴∗ CNN

K-times
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LEARNED PRIMAL-DUAL RECONSTRUCTION
[ADLER & ÖKTEM, IEEE TRANSACTIONS ON MEDICAL IMAGING , 2018]

• Learned iterative 

reconstruction

• Learning in image 

(primal) and data 

(dual) domain
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CARDIOVASCULAR MAGNETIC RESONANCE IMAGING

Gold-standard breath-hold
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REAL-TIME IMAGING IN CMR AND DEEP LEARNING
K-space data

Direct reconstruction

𝐹𝑘
−1

C
N

N

Pro:

➢ Fast reconstruction and post-processing

➢ Training with magnitude images possible

Contra:

➢ Many samples needed for training

➢ Artefacts ideally to be noise-like
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➢ Trained to minimise the 𝓁2-loss of output to the desired ground truth

(or possible 𝓁1-loss)

➢ 2276 (2D+time) data sets from ~250 patients

➢ Real-time data 13x accelerated, simulated from magnitude images

NETWORK ARCHITECTURE AND TRAINING
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COMPARISON OF RADIAL SAMPLING PATTERNS

➢ Nature of artefacts is 

crucial for learning task

➢ Test of radial rotating/non-

rotating sampling patterns
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COMPARISON OF RADIAL SAMPLING PATTERNS
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CLINICAL STUDY
tGA radial bSSFP

R = 13 - 14 spokes

1.7mm - 36ms

10 CHD patients 

Age = 33.6±16.8 years

Same Dx as training

Learned reconstruction GRASP reconstruction 

Compare to 

conventional BH

DICOM Data Raw Data
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CLINICAL STUDY: RECONSTRUCTIONS
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CLINICAL STUDY: VENTRICULAR VOLUMES

[Hauptmann et al., Magnetic Resonance in Medicine, 2019]
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WHEN TO CONSIDER POST-PROCESSING?

➢ If artefacts are incoherent in time: 

CNN learns interpolation in time

➢ If artefacts are not noise-like: 

CNN needs to rely on features 

learned from the training data

➢ Model knowledge needed to 

design a robust learning task!
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MODEL BASED RECONSTRUCTIONS
• Model-based iterative reconstructions are shown to 

outperform post-processing approaches: 

➢ Especially if artefacts are not noise-like/spatially 

correlated:

• Streaking artefacts/limited-view in CT

[Adler&Öktem, 2017&2018]

• Typically these iterative methods are trained end-to-end, i.e. 

data to final iterate.
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PROBLEM WITH END-TO-END TRAINING?

• End-to-end training is not feasible for large image size:

➢ Either due to memory limitation, with 12GB GPU we can train

1024x1024 in 2D or 256x256x16 in 3D.

➢ Or Computational cost during training, due to multiple application of forward 

operator 

Possible solution: Greedy training of each iterate separately. 

➢ That way we can separate evaluation of forward operator from the training task.
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A GREEDY APPROACH
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EXAMPLE: PHOTOACOUSTIC TOMOGRAPHY

• Fabry Perot polymer film 

ultrasound sensor is a planar 

interferometer

• Acoustically-induced thickness       

changes are detected optically

• Standard method is a raster scan: sequentially interrogate all 

pixels

• Interrogate sensor with patterns instead 

➢ Compressed Sensing [Jathoul et al., Nature Photonics, 2015]
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TRAINING ON VESSEL PHANTOMS

240x240x80
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APPLICATION TO HUMAN IN-VIVO MEASUREMENTS

• Reduces reonstruction time by a factor 4 (by reduction of iterations)

• Considerably improves reconstruction quality

Reference

Fully-sampled data

Learned Reconstruction

4x sub-sampled, 5 Iterations, 

Time: 2.5 min., PSNR: 41.40

Total Variation Reconstruction

4x sub-sampled, 20 Iterations,

Time: 10 min., PSNR: 38.05

[Hauptmann et al., IEEE Transactions on Medical Imaging, 2018]
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ACCELERATION BY USING AN APPROXIMATE MODEL

Reference

Fully-sampled data

Learned Reconstruction

4x sub-sampled, 5 Iterations, 

Time: 20 sec., PSNR: 42.18

Total Variation Reconstruction

4x sub-sampled, 20 Iterations,

Time: 10 min., PSNR: 41.16

• Reduces reonstruction time by another factor of ~8 ( → 32x compared to TV)

1
4

 m
m

 x
 1

4
 m

m
4

.5
 m

m

[Hauptmann et al., Machine Learning for Medical Image Reconstruction, 2018]
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ANOTHER SOLUTION: A MULTISCALE APPROACH

To save memory and computation time: Compute only final iterate in full resolution
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MULTI SCALE LEARNED GRADIENT DESCENT
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MULTI SCALE LEARNED FILTERED GRADIENT DESCENT

Due to upsampling we lose high-frequency 

components, especially in the last iterate.
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A SCALABILITY STUDY ON SIMULATED DATA

• We create phantoms of random ellipses

• Test algorithms for increasing image size

• Fan-beam geometry, 512 angles, 0.05% Gaussian noise

• Test following algorithms:

• Learned Gradient Descent (LGD)

• Post-processing with U-Net

• Multi-scale Learned Gradient Descent (MS-LGD)

• Multi-scale Learned filtered Gradient Descent (MS-LFGD)
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A SCALABILITY STUDY: RESULTS
Test on a single NVIDIA Titan XP GPU (12GB)
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RECONSTRUCTION WITH MS-LFGD (1536X1536)

Phantom MS-LFGDFBP
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APPLICATION TO HUMAN PHANTOMS

We use the database supplied by Mayo Clinic for the AAPM Low Dose CT Grand 

Challenge

• Data is simulated following the Beer-Lamberts law with Poisson noise

• Training on 9 patients with 2168 slices of size 512x512

• Testing on 1 patient with 210 slices

We consider three setups of increasing difficulty:
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NETWORK AND TRAINING DETAILS
• Networks are trained for 50,000 iterations (end-to-end), 5 iterates/scales

• Minimise 𝓁2-distance to full-dose scan

• Sub-networks consist of a residual mini U-Net

==
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RECONSTRUCTION RESULTS, U-NET

Full-dose scan U-NetFBP

[-300, 300]HU
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RECONSTRUCTION RESULTS, MS-LGD

Full-dose scan MS-LGDFBP

[-300, 300]HU
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RECONSTRUCTION RESULTS, MS-LFGD

Full-dose scan MS-LFGDFBP

[-300, 300]HU
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RECONSTRUCTION RESULTS, LGD

Full-dose scan LGDFBP

[-300, 300]HU
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QUANTITATIVE RESULTS
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RECONSTRUCTION ON MULTIPLE SCALES

Reduces memory 

consumption of learned 

iterative reconstructions

➢ Possible to train end-to-end

➢ Faster with competitive 

results

[Hauptmann, Adler, Arridge, Öktem, to be submitted (soon)]
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CONCLUDING REMARKS
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