Optimizing Safety and Efficiency in Brachytherapy: Perspective from an Experienced Brachytherapy Physician

Melissa Joyner, MD, MBA
Associate Professor
M. D. Anderson Cancer Center
July 16, 2019

Disclosures

• I have nothing to disclose.

Objectives

• Deliver safe and effective brachytherapy
• Understand brachytherapy workflow and how to leverage brachytherapy techniques
• Understand how imaging facilitates improve tumor delineation
• Understand importance of collaboration with your physics team
Objective Statement

- Technology has enabled physicians to better delineate target volumes for planning in brachytherapy. It is well-recognized that precise targeting of the tumor volume is a key prognostic factor in achieving local control in cervical cancer and can help spare organs at risk and decrease the risk of dose-related complications. Additionally, equipment and implant techniques can influence the quality of the implant and ideal dosing to effectively treat the patient’s disease.

Use of various imaging modalities is dependent on the resources available at one’s institution. Additionally, equipment and implant techniques can influence the quality of the implant and ideal dosing to effectively treat the patient’s disease. It is important to consider the extent of the gross tumor volume (GTV) at diagnosis and then compare that to imaging prior to brachytherapy. The high-risk CTV (HR CTV) is defined with the intent to deliver a sufficient dose to eradicate all residual macroscopic disease. Intermediate risk CTV (IR CTV) should encompass any microscopic disease. The experienced physician takes into account the anatomic structures which also dictates protecting organs at risk including the bladder, rectum, and sigmoid. In doing so, the physician works to limit the D2 cc to the bladder, rectum, and sigmoid. Accuracy of the patient's location and treatment delivery will benefit the patient and will produce better outcomes. Correct handling and respect for radioactive sources not only protects the patient but all of the staff caring for the patient.

Global Statistics: Cervical Cancer

- 2nd most common cancer in the developing world
- ~500,000 new cases/yr worldwide
- 288,000 deaths/yr

Brachytherapy utilization for cervical cancer

[Graph of brachytherapy utilization for cervical cancer]
Overall survival by brachytherapy utilization

Decline in Brachytherapy use leads to....

Concerns
• Lack of skills
• Increase in complications
• Lack of routine
• Workflow inconsistencies
• Decrease in survival for patients

High Dose Rate (HDR) Brachytherapy

Benefits of HDR
• Outpatient procedure/ convenience
• Optimization (vs LDR)
• Stable applicator position throughout treatment
• Decreased risks of PE
Treatment Sequencing

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 7</th>
<th>Week 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBRT</td>
<td>EBRT</td>
<td>EBRT</td>
<td>EBRT</td>
<td>EBRT</td>
<td>EBRT</td>
<td>EBRT</td>
<td>EBRT</td>
</tr>
<tr>
<td>45 Gy</td>
</tr>
<tr>
<td>(or 50.4 Gy)</td>
</tr>
</tbody>
</table>

HDR Brachytherapy Workflow

- 20-30 min placement
- Confirm placement
- CT: 10 min
- MRI: 20 min
- QA
- Contouring Planning
 - CT: 30 min
 - Confirm anatomical placement for gas
- ~1-2 hours for standard Tandem and ovoid
- Digitization 15 min

Brachytherapy Tools

- Choosing the right device
- Utilizing imaging
 - MRI before therapy to understand extent of disease
 - MRI before brachytherapy implant ideal for tumor delineation
 - PET CT
Applicator Choice

- Tandem and ovoid
 - Increased flexibility
 - MRI/CT compatible applicators
- Ring and Tandem
 - Fixed geometry
- Tandem and cylinder
- Combined IC/IS applicators
 - Vienna, Venezia, MUPIT

- Strong opinions regarding applicators; skill/knowledge probably more important than applicator choice

Fletcher CT-MR Tandem and Ovoid Applicator

The sail is adjustable so that the tandem length can be set same as the intrauterine sound. The set has two tandems (25 and 30 degrees) and six ovoid pairs (15/20/25/30/35/40 mm)
It has 9 holes in the ring which allow placement of interstitial titanium needles while the ring serves as the template. This makes it possible to achieve an asymmetric dose distribution. The 3 tandem lengths are fixed (20/40/60 mm).

Venezia applicator (Elekta)
Imaging evolution

• Historically, many institutions used orthogonal films to verify implant placement.

Imaging Utilization in Brachytherapy

• CT based planning
• MRI based planning

• Results in:
 • Better tumor delineation
 • Potential for less complications
 • Improved survival
Determining Extent of Primary Tumor

- Pelvic examination
 - Staging Accuracy: 47%
 - Bipat et al, Gyn Onc 2003

- MRI versus CT Imaging
 - Staging Accuracy: 86%
 - MRI is superior to CT for detecting uterine body involvement/PM invasion (ACRIN 6651/GOG 183) —JCO 2006
 - MRI superior in detecting vaginal extension

Move from 2D based planning to 3D Imaging

- 124 tandem/ring insertions
- Rate of uterine perforation: 13.7% (17/124)
- Perforation in 8/98 (8.2%) when RO felt confident there was no perforation

Barnes et al, IJGC 17(4)821-4, 2007

Quality of the implant matters
Quality matters: RTOG 0116 and 0128

- Mean f/u 24.5 months
- Reviewed brachytherapy records
- Higher LR with unacceptable geometry
 - Displacement of seeds relative to ov HR 2.67
 - Unacceptable symmetry of seeds and tandem HR 2.50
 - Inappropriate packing placement HR 2.06

Viswanathan UOGG 2010

Improved tumor delineation with 3D imaging

Viswanathan UOGG 2010

Advantages of image guided brachytherapy

- Confirmation of applicator placement
- Dosimetry
 - HRCTV
 - OARs
- Small cervix volume vs large tumor volume
CT contouring guidelines

- Inferiorly:
 - Ovoids: Contour tissue to level of ovoids
 - Ring: inferiorly at level of ring contour tissue inside of ring
 - Adjacent vaginal tissue if involved
- Superiorly:
 - Contour to level where uterus indents (internal os)
 - Nest 1 cm as pointed cone
 - Cervix ~3 cm
- Laterally: PM extension (grey/white on CT)
- PE findings and MR at prebrachy

MRI Brachytherapy Guidelines

- GTV:
 - Macroscopic tumor extension at time of brachytherapy
 - High signal intensity mass(es) (FSE, T2) in cervix/corpus, parametria, vagina, bladder and rectum
- High Risk-CTV:
 - Includes cervix, whole uterus, and presumed extracervical tumor extension. Pathologic residual tissues as defined by palpable induration or grey zone in parametria, uterine corpus, vagina, or rectum, and bladder are included in HR-CTV. No margins.
- Intermediate Risk-CTV:
 - Includes MRI TV with margins added according to tumor size and regression; minimal margins of 5-15 mm
 - Extensive disease w/ good remission HR-CTV and initial tumor extension

Results of image guided brachytherapy

| | 5 yr | Local control | Overall Survival | Late toxicity (Grade 3+)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STIC</td>
<td>2</td>
<td>78.5-100%</td>
<td>74-96%</td>
<td>2.6-8.9%</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>2</td>
<td>90%</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>Vienna</td>
<td>3</td>
<td>91%</td>
<td>94%</td>
<td>0%</td>
</tr>
<tr>
<td>Addenbrooke</td>
<td>3</td>
<td>96%</td>
<td>82%</td>
<td>11% crude (14% actuarial)</td>
</tr>
<tr>
<td>Korea</td>
<td>3</td>
<td>97%</td>
<td>NR</td>
<td>2%</td>
</tr>
<tr>
<td>Paris</td>
<td>4</td>
<td>91%</td>
<td>94%</td>
<td>0%</td>
</tr>
<tr>
<td>Australia</td>
<td>5</td>
<td>87-88%</td>
<td>60%</td>
<td>0.6-4.6%</td>
</tr>
<tr>
<td>Leuven</td>
<td>5</td>
<td>96%</td>
<td>65%</td>
<td>6%</td>
</tr>
</tbody>
</table>
GTV\textsubscript{BT} (palpable residual disease) and residual high signal intensity disease on MR
Initial presentation

- Cervix = HRCTV
- Initial disease = IRCTV

Brachytherapy

- Complete response
- Confined to anatomic borders

HRCTV = GTV + cervix + grey zones

Initial presentation

- HRCTV = cervix plus residual disease
- IRCTV > initial tumor extent

Brachytherapy

- Poor partial response

- EBRT/Cis
IRCTV = HRCTV + presumed adj micro disease + margin

For limited disease (tumor < 4 cm): IRCTV = HRCTV + 5 mm (AP/PA), 10 mm (cranially to corpus), 10 mm (R/L)
Confined by anatomic borders: pelvic wall, uterus, bladder, rectum (unless invasion noted)

More extensive disease: IRCTV based on initial GTV
Confined by anatomic borders: pelvic wall, uterus, bladder, rectum (unless invasion noted)
A patient with stage IIB cervical cancer is being prepared for high dose rate (HDR) brachytherapy after completing 45 Gy external beam radiation. What is the best imaging approach using IV contrast to target the high-risk CTV for cervical cancer brachytherapy?

A. CT scan at diagnosis and at the time of the implant
B. MRI before the implant only
C. CT scan before the implant only
D. MRI at diagnosis and at the time of the implant

Answer

- Correct answer: D

REFERENCE:

Working as a team with Physics
Radioactive Sources: Iridium\(^{192}\)

- Half life is 73.8 days
 - Produced by bombarding Iridium\(^{191}\) with thermal neutrons in a nuclear reactor
 - HDR source replaced every 90 days
- X & Gamma rays 0.063 to 1.4 MeV
 - Average energy: 0.397 MeV
- Manufactured as seeds and ribbons
 - $\Gamma = 4.60 \text{ R-cm}^2/\text{mCi-hr}$

Basic Principles

Normal Tissue Dose Points (ICRU)

- Bladder
 - ICRU Bladder pt<75 Gy
- Rectum
 - ICRU Rectal pt<70 Gy
- Vagina:
 - Upper: 120-140 Gy
 - Lower: 90 Gy
Manual optimization

- Times entered manually with weighting considerations
- Iterative process

Graphical optimization
Inverse optimization

- Inverse optimization
 - HIPO (hybrid inverse planning and optimization) preserves typical dose distribution and keeps high-dose regions within target
 - IPSA (UCSF) - no specific tools to control spatial dose distribution
- What happens to my pear?
 - Pear: concentrated doses within the uterus with sparing of adjacent OARs
- Concern:
 - Blow up dwell times/needles
Dose: 45 Gy Pelvis EQD2

<table>
<thead>
<tr>
<th>Fx #</th>
<th>Dose</th>
<th>EQD2 Tumor</th>
<th>EQD2 Normal tissue (90% PD)</th>
<th>EQD2 Normal tissue (70% PD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7 Gy</td>
<td>83.9 Gy</td>
<td>90.1 Gy</td>
<td>74.2 Gy</td>
</tr>
<tr>
<td>5</td>
<td>6 Gy</td>
<td>84.3 Gy</td>
<td>88.6 Gy</td>
<td>73.4 Gy</td>
</tr>
<tr>
<td>6</td>
<td>5 Gy</td>
<td>81.8 Gy</td>
<td>83.7 Gy</td>
<td>70.5 Gy</td>
</tr>
<tr>
<td>5</td>
<td>5.5 Gy</td>
<td>79.8 Gy</td>
<td>82.6 Gy</td>
<td>69.6 Gy</td>
</tr>
</tbody>
</table>

GEC ESTRO: Planning target goals

<table>
<thead>
<tr>
<th></th>
<th>D90 HRCTV EQD2</th>
<th>D98 HRCTV EQD2</th>
<th>D98 GTV EQD2</th>
<th>D98 IRCTV EQD2</th>
<th>Point A EQD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning goals</td>
<td>>90 Gy</td>
<td>>75 Gy</td>
<td>>95 Gy</td>
<td>>60 Gy</td>
<td>>65 Gy</td>
</tr>
<tr>
<td>Upper limit</td>
<td>> 85 Gy</td>
<td>-</td>
<td>>90 Gy</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

GEC ESTRO: OAR planning goals

<table>
<thead>
<tr>
<th></th>
<th>Bladder D2cc EQD2</th>
<th>Rectum D2cc EQD2</th>
<th>Sigmoid D2cc EQD2</th>
<th>RV point EQD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning goal</td>
<td><80 Gy</td>
<td><65 Gy</td>
<td><70 Gy</td>
<td><65 GY</td>
</tr>
<tr>
<td>Upper limit</td>
<td><90 Gy</td>
<td><75 Gy</td>
<td><75 Gy</td>
<td><75 GY</td>
</tr>
</tbody>
</table>
Vaginal dose constraints

<table>
<thead>
<tr>
<th>Aim</th>
<th>Primary</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICRU recto-vaginal point dose</td>
<td>Primary</td>
</tr>
<tr>
<td>Ratio of vaginal TRAK and total TRAK</td>
<td>Secondary</td>
</tr>
<tr>
<td>Vaginal lateral dose points at 5 mm</td>
<td>Secondary</td>
</tr>
<tr>
<td>Visual inspection of the 140% isodose</td>
<td>Secondary</td>
</tr>
</tbody>
</table>

EMBRACE protocol

Uterine dose with MR guided brachy

SAM Question

- After a HDR brachytherapy treatment has been delivered and the source retracts, the physician and physics staff enter the room and perform which procedure first?
 A. Patient identification.
 B. Immediate removal of the implant device.
 C. Radiation survey of the patient.
 D. Chart completion noting dose delivered and source activity.
3D Printed templates for GYN brachytherapy

- Patient specific
 - Small vaginal dimensions can be accommodated
 - Angled catheters
- Second copy of template outside for guidance
 - Color coded holes for easier guidance
- Optimal dose distributions for large complicated implants
 - Uterosacral disease
 - Lateral parametrial disease
- Commercialization possible
 - Produced in house vs 3D printing company

What’s next....
3D printed templates for GYN brachy

Acknowledgments

• Lilie Lin, MD
• Sandra Hatch, MD
• Ann Klopp, MD
• Emma Fields, MD
• Brent Parker, PhD
• Scott Davidson, PhD
• Ann Lawyer, PhD
• EJ Endres, CMD

Thank you