Error Discovery in Radiotherapy Plan Verification: An Advanced Probabilistic Approach

Alan M. Kalet, PhD
University of Washington Medical Center, Seattle, WA

Disclosures

NIH support

- award 1R41CA217452-01A1
 (STTR partnership with Sun Nuclear)

Outline

- Plan verification and expert knowledge
- Development methods
- Testing/validation
- Results
- The role of probabilistic models in QA
- Challenges and future directions
Pre-treatment plan verification process

- Consult
- Investigate
- Evaluate
- Decide

Consult with multiple people: Physicians, Dosimetrists, Physics, Sim/Therapy staff, nursing...

Investigate multiple software systems: Data transfer, plan technicals, MU 2nd check, imaging, tracking, motion control systems...

Evaluate multiple results: Coverages, setup devices, protocols, policies, billing...

Decide:
- Based on Experience, Expert knowledge, Guidelines and recommendations (ASTRO, AAPM)

There are no established standards for how to do this! (TG 100, TG 275 begins to address)

So what's the issue?

We know the Physics pre-Tx review:
- Potentially catch between 50-80% of errors
- But in practice only catches about 30-40% [1]

We spend a lot of time and effort searching for and evaluating information

Automation and tools can have high impact!

Bayesian Network approach

- Address points where 'judgement' is required
- Leverage clinical data - adapts to local practice
- Investigative potential - shows you where to look

Collection of data over the years (big data) largely enables the use of complex probabilistic models
- Record and Verify systems
- Hospital EMRs and local database systems
- Treatment Planning

Bayesian Network vs. rules-system

<table>
<thead>
<tr>
<th></th>
<th>Bayes net</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors of judgment</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Maintenance/Updating</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Complex relationships</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Transparency</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Speed</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Static errors (protocols)</td>
<td>✗</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Outline

- Plan verification and expert knowledge
- Development methods
- Testing/validation
- Results
- The role of probabilistic models in QA
- Challenges and future directions
Model building

1. **Topology**
 - Network structure
 - Holds underlying dependency semantics

 ![Directed acyclic graph](image)

2. **Probability Tables**
 - Experiential
 - From clinical OIS

Ex: given Palliative Intent and Total Dose of 10Gy, what is the probability of using VMAT Technique?

1. **Topology**
 - Identify concepts important to the radiotherapy plan check
 - In-house software derives structure according to direction of dependency
1. Topology

- Identify concepts important to the radiotherapy plan check
- In-house software derives structure according to direction of dependency
- Based on ontological formalism
- Causality flows downhill: Diagnosis -> Rx -> Plan -> Setup

2. Probability tables

- Mosaq RDB
- Machine Learning (ML algorithms)

Outline

Plan verification and expert knowledge
Development methods
Testing/validation
Results
The role of probabilistic models in QA
Challenges and future directions
What do we want to catch?

Prescription level errors:
- 540cGy Total dose prescribed for 28 fraction curative esophagus
- 18MV Modality prescribed for brain VMAT

Plan/Beam level errors:
- 180° Gantry angle for VMAT prostate (treat through couch rails)
- Wrong SSD for 4 field box bladder plan (misplaced iso)
- 18MV Energy selected for brain VMAT

Setup level errors:
- Breast board setup device used for T-Spine plan
- Headrest setup device selected for prostate case

Derived from both incident learning systems and expert knowledge

Outline

- Plan verification and expert knowledge
- Development methods
- Testing/validation
- Results
- The role of probabilistic models in QA
- Challenges and future directions

Propagation

Instantiate clinical findings ("ground truth")

Changes propagate downstream

check probability, and decide if error
Practical considerations for commercial implementation:

1. What diversity of data is needed?
2. Robustness of performance over time?
3. How to handle missing data?
4. Differentiation of error class?
3. Impact of missing data

Half the data is ok

What accounts for most of the loss?

<table>
<thead>
<tr>
<th>Time-frame</th>
<th>2014-2017</th>
<th>2010-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>All error types</td>
<td>0.89</td>
<td>0.78</td>
</tr>
<tr>
<td>Prescription</td>
<td>0.92</td>
<td>0.84</td>
</tr>
<tr>
<td>Beam/Plan</td>
<td>0.95</td>
<td>0.73</td>
</tr>
<tr>
<td>Setup</td>
<td>0.95</td>
<td>0.99</td>
</tr>
</tbody>
</table>

More rapid change in planning and delivery methods

4. Differentiation by error class

Result Summary

Good discerning ability (AUC = 0.89) Vs. Human experts (AUC = 0.9)

Practical considerations:
1. 3 years of data to cover good range of possibilities
2. Even half the data within the 3 year window is sufficient
3. Updates needed annually to avoid performance loss
Outline

Plan verification and expert knowledge
Development methods
Testing/validation
Results
The role of probabilistic models in QA
Challenges and future directions

Detectability = fraction of detectable incidents
Occurrence = number of events in incident learning database

Challenges and future work

1. Understand how to translate to different clinical profiles
2. Different EMR usage and data requirements
3. Account for varying practice patterns
4. Ways to trace error sources – not just flag values
5. Planned multisite evaluation and testing
Main Takeaways

- Demonstrated successful BN approach to error detection
- Combine with other methods to form best defense
- High potential component of assistive QA tools

Thank you!

Acknowledgements
Sam Luk, PhD, MP, Resident, UWMC
Mark Phillips, PhD, Professor, UWMC
Eric Fron, PhD, AAPM, Professor, UWMC
Jeff Kasperev, Senior Director, Research & Regulatory, Sun Nuclear Corporation