Error Discovery in Radiotherapy Plan Verification: An Advanced Probabilistic Approach

Alan M. Kalet, PhD University of Washington Medical Center, Seattle, WA

Science of Safety - AAPM, 2019

Disclosures

NIH support • award 1R41CA217452-01A1 (STTR partnership with Sun Nuclear)

Outline

Plan verification and expert knowledge Development methods Testing/validation Results The role of probabilistic models in QA Challenges and future directions Pre-treatment plan verification process

• Consult

• Investigate

Pre-treatment plan verification proces

Physicians, Dosimetrists, Physics, Sim/Therapy staff, nursing.

 Intesugate multiple software systems: Data transfer, plan technicals, MU 2nd check , imaging, tracking, motion control systems...

aluate multiple results: Coverages, setup devices, protocols, policies, billing...

Based on Experience, Expert knowledge, Guidelines and recommendations (ASTRO, AAPM)

There are no established standards for how to do this I (TG 100, TG 275 begins to address)

So what's the issue?

We know the Physics pre-Tx review:

Potentially catch between 50-80% of errors
But in practice only catches about 30-40% [1]

We spend a lot of time and effort Searching for and Evaluating information

utomation and tools can have high impact!

Bayesian Network approach

- Address points where 'judgment' is required
 Leverage clinical data adapts to local practice
 Investigative potential shows you where to look

Collection of data over the years (**big data**) largely enables the use of complex probabilistic models

- Record and Verify systems
 Hospital EMRs and local database systems
 Treatment Planning

Bayesian Network vs. rules-system

Outline

Plan verification and expert knowledge Testing/validation Challenges and future directions

Model building

Topology

 Network structure
 Holds underlying dependency semantics

Model building

1. Topology • Network structure Holds underlying dependency semantics

2. Probability Tables
• Experiential
• From clinical OIS

4

Outline

Plan verification and expert knowledge Development methods Testing/validation

Challenges and future directions

What do we want to catch?

Prescription level errors: 540cGy Total dose prescribed for 28 fraction curative esophagus 18MV Modality prescribed for brain VMAT

Plan/Beam level errors: 180 Gantry angle for VMAT prostate (treat through couch rails) Wrong SSD for 4 field box bladder plan (misplaced iso) 18MV Energy selected for brain VMAT

Setup level errors: Breast board setup device used for T-Spine plan Headrest setup device selected for prostate case

Propagation

Instantiate clinical findings ("ground truth")

Changes propagate downstream

check probability, and decide if error

Outline

Plan verification and expert knowledge Testing/validation

Challenges and future directions

Practical considerations for commercial implementation:

- 1. What diversity of data is needed?
- Robustness of performance over time?
- 3. How to handle missing data?
- Differentiation of error class?

What accounts for most of the loss?			4. Differentiation by error class
	2010-2013	2014-2017	Time-frame
	0.78	0.89	All error types
More rapid change in planning and delivery methods	0.84	0.92	Prescription
	0.73	0.86	Beam/Plan
	0.93	0.95	Setup

Result Summary

- 3 years of data to cover good range of possibilities
 Even half the data within the 3 year window is sufficient

Outline

Plan verification and expert knowledge Testing/validation Results Challenges and future directions

Challenges and future work

- Ways to trace error sources not just flag values
 Planned multisite evaluation and testing

Main Takeaways

- Demonstrated successful BN approach to error detection
- Combine with other methods to form best defense
- High potential component of assistive QA tools

