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Machine Learning

• Radiomics and deep learning are currently popular

• Radiomics typically involves developing classifiers using hand-crafted 
features of segmented regions

• Deep learning approaches typically use the whole image (or a bounding box 
around the ROI, without segmentation) to learn the filters
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Typical radiomics workflow

Image
acquisition

[Preprocessing]
[Tumor 

segmentation]
Feature 

extraction

Classification
/

stratification

Slide: Jay Patel

Shape features are derived from areas, 
volume, and diameters of segmentation 
(mask)

These are irrespective of intensity and 
adjusted for voxel dimensions. 
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Shape / Morphology Features

https://github.com/QTIM-
Lab/qtim_tools/blob/master/documentation/Tutorial_Mod
ules/Machine_Learning_and_Feature_Extraction_Tutorial/F
eature_Extraction_Tutorial/Feature_Extraction_Tutorial.ipy
nb Slide: Andrew Beers
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Morphology (Shape) Features

High Sphericity Low Sphericity

GLCM Contrast

(Left/Right): 484

(Up/Down): 0

(Left/Right, Distance 5): 

2596

Intensity

Mean Intensity: 170

STD Intensity: 84.5

Skewness: 0

GLCM Contrast

(Left/Right): 81

(Up/Down): 81

(Left/Right, Distance 5): 

437

Intensity

Mean Intensity: 179

STD Intensity: 27

Skewness: 2.5

GLCM Contrast

(Left/Right): 1210

(Up/Down): 1210

(Left/Right, Distance 5): 

6491

Intensity

Mean Intensity: 128

STD Intensity: 73

Skewness: 1.15

GLCM Contrast

(Left/Right): 633

(Up/Down): 648

(Left/Right, Distance 5): 

661

Intensity

Mean Intensity: 178

STD Intensity: 18

Skewness: .04

Intensity / Texture Phantoms

Grey-Level Co-Occurrence Matrices (GLCM)

Higher Contrast at Larger Distances

Higher Contrast at Shorter Distances

High GLCM Correlation (Voxel Distance 1)

Low GLCM Correlation (Voxel Distance 1)
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Chang et al, Neuro-Oncology 18(12), 2016

Challenges in radiomics research

Image
acquisition

Pre-
processing

Tumor 
segmentation

Feature 
extraction

Classification/

stratification

Random Forest
SVM
…
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Acquisition effects

Zhao et al https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806325/pdf/srep23428.pdf

Effects of image reconstruction 

• x

CCC heat map of radiomic features. The CCCs (0 to 1) of the studied 
radiomic features were computed from repeat CT images 
reconstructed at (a) six identical imaging settings or (b) three 
different imaging settings. There were 89 quantitative features 
grouped into 15 feature classes. The brighter the red color, the 
higher the CCC value (i.e., the more reproducibility) of a feature 
computed for the repeat scans. The label of “1.25L1 vs 1.25L2” 
means both first and second scans were reconstructed at 1.25mm 
slice thickness using the lung algorithm. “2.5L vs 2.5S” means both 
scans were reconstructed at 2.5mm slice thickness but using 
different algorithms (i.e., lung vs. standard algorithms).

Zhao et al https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806325/pdf/srep23428.pdf

Radiomics in MR – a repeatability study

• Radiomics used commonly in MR
• However, MR is often not quantitative (“T1-weighted”)

• Normalization matters enormously

• Preprocessing matters

• Implementation matters

• ICC of many features <0.5



7/15/2019

6

Additional challenges in MRI

• Pixel intensity in “weighted” images does not have inherent meaning

• Often multiple sequences are used

Repeatability of radiomics features using open source software for T1 and FLAIR ROI in GBM

Repeatability of Multiparametric 
Prostate MRI Radiomics Features

Schweir et al, https://arxiv.org/pdf/1807.06089.pdf

“Our study shows that radiomics features…vary 
greatly in their repeatability. Furthermore, 
repeatability of radiomics features evaluated 
using ICC is highly susceptible to the 
processing configuration”

Repeatability and Reproducibility of 
Radiomic Features: A Systematic Review

“Investigations of feature repeatability and reproducibility are 
currently limited to a small number of cancer types. No consensus was 
found regarding the most repeatable and reproducible features with 
respect to different settings.”

Traverso et al, 2018, International Journal of Radiation Oncology* biology* physics
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Effect of segmentation on texture

High contrast 5 vs 10

Lack of reproducibility: Implementations 
can agree between packages

• Contrast

Or not…

• Contrast
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Standardization in Quantitative Imaging: 
A Comparison of Radiomics Feature 
Values Obtained by Different Software 
Packages On a Set of Digital Reference 
Objects

Tuesday, 7/16/2019) 4:30 PM - 6:00 PM,  Room: 304ABC AAPM 2019 

By computing a subset of nine common radiomics 
features using a variety of software packages on DROs, 
we have shown that while several features agree 
strongly, others do not. This highlights the need for 
standardization in feature definitions and proof of 
equivalence of computational methods.

Must-do for all radiomics research!

Welch et al, 2019

“MW2018 had an external validation concordance index of 0.64. However, a similar 
performance was achieved using features extracted from images with randomized signal 
intensities (c-index=0.64 and 0.60 for H&N and lung respectively). Tumour volumes had a c-
index =0.64 and correlated strongly with three of the four model features. It was 
determined that the signature was a surrogate for tumour volume and that intensity and 
texture values were not pertinent for prognostication”
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Features are highly correlated (to 
volume and intensity!)

Glioblastoma

• GBM is an aggressive form of brain cancer

• It affects people of all ages, and it carries a poor prognosis

• Standard of care is chemotherapy, radiotherapy, and surgery

Source: Mahajan et al., Clinical Radiology 2015 

The need for better care for glioma

Macmillan Cancer Support 
(2011)
Alexander et al., JCO (2017)

5-year survival rate after 
diagnosis: 5%
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Variability in response assessment

RANO

Moderate agreement

(adjudication rates in clinical trials is often high)

Volumetric (clinical trial)

Effect of head tilt on (human) 
measurements of tumor burden

Reuter et al analyzed the reliability of 
the area measure with respect to 
head placement in the MRI scanner 
and compares it with 3D volume 
measures in a dataset of 8 subjects

Reuter et al, J Neurooncol (2014) 118:123–129 

Pipeline Customization

Image Preprocessing

Pretrained Models

https://github.com/QTIM-Lab/DeepNeuro

https://github.com/QTIM-Lab/DeepNeuro
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Algorithm workflow

Patient Cohorts

Chang et al,  Neuro Oncol, 2019

Clinical Validation
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Both manual and automatic measures
are highly repeatable

High agreement between manual and 
automatic volume

Glioblastoma response assessment

• Longitudinal measurement of glioma burden with MRI is the basis 
for treatment response assessment

• Manual delineation of tumor burden is both time-consuming and 
subject to inter-rater variability

• We developed a deep learning algorithm that automatically 
segments abnormal FLAIR hyperintensity and contrast-enhancing 
tumor, quantitating tumor volumes as well as the product of 
maximum bi-dimensional diameters according to the Response 
Assessment in Neuro-Oncology (RANO) criteria (AutoRANO)
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Response Assessment in Brain Tumors

• Goal: Used to assess response in brain 
tumors
• Complete Response

• Partial Response

• Stable Disease

• Progressive Disease

• Adjudication rates are quite high in 
oncology clinical trials (~40%)

https://www.omicsonline.org/open-access/adjudication-rates-between-readers-in-blinded-independent-central-
review-ofoncology-studies-2167-0870-1000289.php?aid=81626

Treatment Response Assessment
Aim 1 Aim 2 Aim 3

Longitudinal Tracking of Tumor Burden

Can our automatically derived RANO measurements be in 
agreement with human measurements?

And be in agreement with treatment response assessment 
in the following categories?

• Complete Response
• Partial Response
• Stable Disease
• Progressive Disease

AutoRANO

Comparison between experts, AutoRANO to expert A, 
AutoRANO to expert B

Chang et al, Neuro-Oncology (2019)
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AutoRANO is more correlated with 
manual volume than Manual RANO

Both automatic volume and AutoRANO can 
track longitudinal changes in tumor burden

IDH prediction

No Mutation IDH Mutation

FLAIR T2

T1 T1 Contrast

FLAIR T2

T1 T1 Contrast

Accuracy

Training 93%

Validation 94%

Testing 88%

Less aggressive growth

Sharp margins

Homogenous signal intensity

Less contrast enhancement

Chang et al, Clinical Cancer Research
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Prediction of Overall Survival

Radiomics (Age + Volumes + Shape + Texture) Neural Network, Imaging Only

Brain metastases

• Brain metastases (BM) patients undergo routine MR scans throughout 
therapy

• Need to track individual lesion growth/shrinkage rates across timepoints to 
assess efficacy of current treatment regimen

• Manual delineation of entire lesion burden is too time-consuming to be 
feasible in clinical workflow

• Solution: utilize neural network to segment lesions on MPRAGE-post 
contrast imaging

DeepNeuro METS Segmentation
Challenges
• Large number of micrometastases 

(>10 per patient on average)
• Similar intensity profile of METS and 

vessels

• Dural lesions can be accidentally 
removed from automatic skull 
stripping
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Results – Loss Functions

Manual Automatic

Training Validation Testing

Dice Loss 0.72 0.65 0.65

Weighted

Cross-

Entropy

0.76 0.69 0.69

Boundary

weighted 

Cross-

Entropy

0.78 0.74 0.70

Results – Detection Rates

Manual Automatic

Average Size 

of Detected 

Lesions (mL)

Average Size 

of Missed 

Lesions (mL)

Training 11.13 0.10

Validation 6.52 0.07

Testing 4.06 0.05

Results – Detection Rates

• Micrometastases hard to detect, but potentially less clinically relevant

• Average size of missed nodule = .09 mL

• Average size of detected nodule = 11.13 mL
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Longitudinal Tracking of Brain METS

Longitudinal Tracking of Brain METS

(a) Deep learning based approach used to 
automatically segment metastatic lesions 
across time points. (b) Affine registration of 
all patients/all timepoints to MNI atlas. 
Lesion segmentations are subsequently 
projected onto the atlas space. (c) Lesion 
growth rate over timepoints is measured 
and overlaid on atlas. Circle size 
corresponds to average lesion size over 
timepoints and color corresponds to 
growth rate (blue: shrinkage; green: little to 
no growth;  yellow: high growth). 
Significantly larger and higher growth rate 
metastases found in posterior anatomy.

Longitudinal Tracking of Brain METS

Red lesion represents high growth rate metastases. This lesion was not present during time 
point one, but grows to a significant size over the patient visits. Yellow lesion represents slow 
growth rate metastases. This lesion was also not present during time point one, but does not 
grow to as large of a volume, nor grow as quickly as the red-labeled lesion. Green lesion 
represents a shrinking metastases. This lesion shrinks in size over the course of treatment.
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Summary

• Machine learning including deep learning has great potential in response 
assessment.

• However, the repeatability and reproducibility of radiomics is an area of 
active research.

• Deep learning based approaches for segmentation and registration have 
demonstrated good performance in the literature

• Deep learning methods can be brittle and not generalize well

• Deep learning methods are considered to be “black boxes” but techniques 
are being developed for explainable AI

• Comparing sophisticated models to baseline volume change is highly 
recommended

Acknowledgements

• Athinoula A. Martinos Center for Biomedical Imaging

–Jayashree Kalpathy-Cramer

–Elizabeth Gerstner

–Bruce Rosen

–Yi-Fen Yen

– Ina Ly

–Andrew Beers

–Ken Chang

• Funding & Support

–MGH/BWH Center for 
Clinical Data Science

–National Science Foundation

–National Institutes of Health

–Katharina Hobel

–Jay Patel

–Jonathan Cardona

–Praveer Singh

–Malika Shahrawat

–Sunakshi Paul

qtim-lab.github.io


