R01 CA204189 Development of Anatomical Patient Models to Facilitate MR-only Treatment Planning

Carri Glide-Hurst, PhD, DABR, FAAPM Director of Translational Research, Radiation Oncology, Henry Ford Health System Associate Professor FTA, Wayne State University

Disclosures

• Research funding provided by:

- NIH R01CA204189
 Philips Healthcare
- HFHS A-Grant
- Research Collaborations with Modus Medical Devices, ViewRay, Inc,
- Honorarium/Travel/Research Agreements with ViewRay, Inc

Funding Overview

- PAR-15-075, Academic-Industrial Partnerships for Translation of Technologies for Cancer Diagnosis and Treatment (R01)
- 5-year grant, July starts year 4 of 5
 <u>Academic</u> (and overall PI): Carri Glide-Hurst, PhD +
- team (scientists, clinicians, statistician)
- <u>Industry</u> (Philips Healthcare Hamburg, Germany, PI): Steffen Renisch, PhD + team (scientists)
- <u>Modus Medical</u> subcontract for end-to-end phantom development & build

Submitted, June 2015→Nov, 2015, I got a score!!

The score came with a caveat...

If you choose to submit a resubmission application for the next review cycle under this policy for new investigators, your amended application must be received at NIH no later than Thursday, December 10, 2015.

<1 month!! To recover from a 37th percentile!!

W00000 H0000!!!!

	11	Application Number	r: 1 R01 CA204189-01A1	
Principal Investigato	r			
GLIDE-HURST, CARP	RI KAYE			
Applicant Organizatio	on: HENRY FORD	HEALTH SYSTEM		
Review Group:	Center for Scient	') ific Review Special Emphasis Par lemic Industrial Partnership	nel	
Meeting Date:	02/18/2016	RFA/PA:	PAR15-075	
Council:	MAY 2016	PCC:	5PDI	
Requested Start:	07/01/2016			
10020000000000000		Dual IC(s):	EB	
Project Title:	Development of a	Anatomical Patient Models to Fac	ilitate MR-only Treatment	
SRG Action:	Impact Score:20	Percentile:5 #		

DELIVERABLES HFHS TEAM: GLIDE-HURST PHILIPS TEAM: RENISCH

margin ca

one masks mCT solution applines to 1.5/3.0T rking: E2E phanton "-sline to 1.5/3.0T MR-CAT pelvis modifications:
 -Bone mask output for HFHS synCT
 -Revised bladder/bone values -Female pelvis
-Optimize OMAR-XD at 1T, 1.5T, 3.0T

dustry guidance: structured user

delineation benchmarking te 3rd party evaluation: WashU

Clinical Motivation/Significance STANDARD OF CARE: CT MRI

 Excellent spatial fidelity Electron density information • Bone/air signal (DRRs) Ionizing radiation

• Unparalleled tissue contrast Distortions at large FOV No direct relationship to ED Limited bone/air signal Non-ionizing radiation Needs to be ec

MR-only Treatment Planning

Ideal Synthetic CT (SynCT)

- Derived from commonly acquired sequences (or) fast sequence
- Accurate geometry (distortions mitigated)
- Accurate electron density
- For use in treatment planning/IGRT
- Site-specific solutions (Brain, Pelvis, etc.)

Limited soft tissue contrast

3

Relevant Prior Experience/Preliminary Data

- Board certified Medical Physicist, ~7 years experience at submission (2-year postdoc)
- Several MR-simulation/4DMRI publications, imaging publications
- Published synthetic CT solutions in pelvis & brain requiring refinement
- \bullet Long-standing collaboration/publications with Philips Healthcare (CT + MRI) although not with the specific Philips team used in collaboration

Aim 1: MRI Distortion Quantification

System Level: -Inhomogeneities in B_0 field -Non-linearity of the spatial encoding gradients (GNL)

Object/Patient Induced:

-Susceptibility, Chemical Shift -May change as patient conditions change

Key Scientific Outcomes: Patient Specific Distortions

Glide-Hurst et al, Radiation Oncology, 2018

Key Translational Outcome: Simplifying Patient Specific Distortions

Key <u>Translational</u> Outcome: Meet PETE!

- Designed & built a novel MR-compatible pelvic end-to-end (PETE) phantom
 with Modus Medical
- Used patient-informed considerations
- Determine impact of organ volumes on system interactions
- Benchmark MR-only planning
- Evaluate patient-specific distortions
 End to and testing

MRI Distortion Take-Homes

- Gradient non-linearity is magnet-specific, can be nonnegligible away from isocenter, may require corrections
- Patient-specific distortions are small, but location may be significant if near lesions, dental fillings, etc.
- Further development of more efficient/inline distortion quantification and corrections are warranted Now let's worry about the electron density (AIM 2)!
 - (emphasis on brain)

HENRY FORD

Previous Complex SynCT Pipeline for Brain

Key Scientific Outcome: Deep Learning SynCT Solution Generative Adversarial Networks (GAN)

- Generator: Residual network with 3 convolutional layers, 9 residual blocks and 2 transposed convolutional layers to generate synCTs
- Discriminator: Central neural network with 5 convolutional layers to classify input images as real or synthetic
- SynCT generated from a single T1-weighted Post-Gd MR dataset in 7s (training took ~11hrs with a GeForce 980 T9 GPU)

Results: GAN SynCT

SRS Cerebellum : 6XFFF Dynamic Arc, 18 Gy

Data Credit: Ning Liu, MS, HFCI

Preliminary Results: SynCT

Bladder well-preserved between MRI & synCT, bowel/rectal gas are WIP
 <u>Major gains</u> over our voxel-based weighted summation pipeline requiring
 manual bone contouring, 4 input MRIs, MAE ~74 HU (Kim *et al*, UROBP, 2015)

Synthetic CT Take-Homes

- Deep learning has vastly accelerated our ability for accurate & efficient synthetic CT generation
- Dosimetry & IGRT performance appear robust
- Modified aims via progress reports to accommodate this new technology
- To be used in Virtual Clinical Trial

Year 4-5: Virtual Clinical Trial (40 Brain/80 Pelvis)

