New Imaging Contrast Agents and Imaging Protocols in Contrast-Enhanced Background-Free Ultrasound and Photoacoustic Imaging

> Brooks Lindsey Stanislav Emelianov

Georgia Wallace H. Coulter Department of Biomedical Engineering

Microbubble contrast agent imaging and considerations

· Gas core

- C<sub>3</sub>F<sub>8</sub> (Octafluoropropane)
- C<sub>4</sub>F<sub>10</sub> (Decafluorobutane)
- C<sub>5</sub>F<sub>12</sub> (Perfluoropentane)
- C<sub>6</sub>F<sub>14</sub> (Perfluorohexane)
- Shell (typically lipid)
- Mechanical index
  - What is the peak negative acoustic pressure resulting in cavitation for a microbubble at resonance?

 $-MI = \frac{p_{-}}{-}$  $\sqrt{f_0}$ 

- FDA limit: 1.9 for non-contrast
- 0.8 for Definity



PEG

Lipid Layer

EMORY

X

### Molecular ultrasound imaging and extravascular delivery

#### Microbubbles

- Commonly used clinically
- Too large to reach extravascular targets

Solid nanoparticles
– Too small to respond

to acoustic field

#### Ideal contrast agent for contrast-enhanced molecular ultrasound

- <u>Small</u> (sub-micrometer) to penetrate endothelium and escape vascular compartments
- <u>Large</u> acoustic cross-section to respond to ultrasound field



#### Molecular ultrasound imaging and extravascular delivery US or laser-triggered perfluorocarbon nanodroplets (PFCnD)



Large acoustic cross-section to respond to ultrasound field

# Boiling point of encapsulated nanodroplets

| <b>Boiling points</b>                     |                   |  |  |  |
|-------------------------------------------|-------------------|--|--|--|
| Bulk gas                                  | 200 nm<br>droplet |  |  |  |
| C <sub>3</sub> F <sub>8</sub> : -36.7° C  | 37° C             |  |  |  |
| C <sub>4</sub> F <sub>10</sub> : -1.7 ° C | 79° C             |  |  |  |
| C <sub>5</sub> F <sub>12</sub> : 29° C    | 119° C            |  |  |  |
| C <sub>6</sub> F <sub>14</sub> : 57° C    | 150° C            |  |  |  |

Core gas in nanoscale droplets experiences several atmospheres of pressure → increased boiling point



**Aicrobubbl** 

#### Imaging encapsulated nanodroplets **Boiling points** Two approaches for imaging: 200 nm 1. Single vaporization Bulk gas droplet 37° C Ultrasou ----C<sub>3</sub>F<sub>8</sub>: -36.7° C C<sub>4</sub>F<sub>10</sub>: -1.7 ° C nlet 79° C C<sub>5</sub>F<sub>12</sub>: 29° C 119° C C<sub>6</sub>F<sub>14</sub>: 57° C 150° C 2. Temporary vaporization followed by re-condensation ation



1. Imaging localized ultrasoundactivation of phase change nanodroplets

# Localized ultrasound activation and imaging

- Goal: Image spatial distribution of nanoscale agent
- Requires activation beam and imaging before/after activation



- Pulse inversion imaging of resulting microbubbles
- Differential imaging before/after activation





Both can work well for broad activation of high concentration agent, little motion

# Localized ultrasound activation and imaging

Challenges:

- Sensitivity to low concentration in regions of localized activation (molecular imaging, delivery)
- Physiological motion



No motion,  $C_4F_{10}\,core,\,10^6/ml,\,37^\circ\,C$ 

Pre-activation B-

# Localized ultrasound activation and imaging

#### Challenges:

- Sensitivity to low concentration in regions of localized activation (molecular imaging, delivery)
- Physiological motion



No motion,  $C_4F_{10}\,core,\,10^6/ml,\,37^\circ\,C$ 























# 2. Laser-activated phase change contrast agents











Laser-activated PFPnDs produce time-varying contrast in US imaging

### Tumor Metastases in Sentinel Lymph Node • Mouse model of oral cancer • Metastatic foci are formed in sentinel lymph node(s) within 2-3 weeks Lymph node













### Summary

- Nanoscale PFC contrast agents enable extravascular imaging
- Ultrasound or laser activation can provide high contrast images with high frame rate ultrasound imaging techniques
- Potential for lymphatic imaging and non-invasive image-guided therapy



### Thank you

*Lindsey lab:* Bowen Jing, Ph.D. Graham Collins Richard Chen Esha Kashyap Joseph Awoyeye Amanda Wijntjes

**Emelianov lab:** Stanislav Emelianov, Ph.D. Steve Yarmoska Daniela Santiesteban Diego Dumani Heechul Yoon

**Collaborators:** Tim Slesnick, M.D. Mike Davis, Ph.D. Milton Brown

