U O VV

The Relative Biological Effectiveness for Carbon, Nitrogen and Oxygen ion beams using passive and scanning techniques evaluated with fully 3D silicon microdosimeters

Linh Tran¹, David Bolst¹, Lachlan Chartier¹, Susanna Guatelli¹, Alex Pogossov¹, Marco Petasecca¹, Michael L. F. Lerch¹, Dale Prokopovich², Marco Povoli³, Angela Kok³, Naruhiro Matsufuji⁴, Tatsuaki Kanai⁵, Michael Jackson⁶ and **Anatoly Rosenfeld¹**

¹Centre of Medical and Radiation Physics, University of Wollongong
 ²NSTLI Nuclear Stewardship, Australian Nuclear Science and Technology Organization, Australia
 ³SINTEF, Norway
 ⁴National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan

⁵ Gunma Heavy Ion Medical Centre, Gunma

⁶University of New South Wales, Australia

Advantages of Heavy Ion Therapy

"How to accurately determine RBE?"

X rays

Cell damage due to indirect DNA damage

Courtesy of M. Scholz

Carbon Ion beams

Cell damage due to direct DNA damage, irreparable DNA breaks

RADIATION PHYSICS OF WOLLONGONG AUSTRALIA

Conventional microdosimeter

Silicon on insulator (SOI) Microdosimeter

✓ Low energy sensitivity y= 0.05
keV/um
✓ Spherical SV in shape
✓ Tissue
equivalency •Large size of assembly which reduces spatial resolution and introduces wall effects

- Can not measure an array of cells.
- High voltage appliedLow degree of portability

- ✓ Can measure an array of cells
- ✓ Micron sized SV
- \checkmark Provide true microscopic SV
- \checkmark Compact size and low voltage for operation
- \checkmark High spatial resolution.

not tissue equivalent CENTRE FOR MEDICAL RADIATION PHYSICS

UNIVERSITY OF WOLLONGONG AUSTRALIA

CMRP Silicon Microdosimeters

SEM image of Mushrooms

Median energy map showing good sensitive volume yield in the Mushroom microdosimeter, biased at -10 V

A.Rosenfeld "Novel detectors for silicon based microdosimetry, their concepts and applications", NIM A, 809, 156-170, 2016

Heavy Ion Medical Accelerator facilities, Japan

HIMAC heavy ion accelerator in Chiba

Gunma Heavy ion Medical Centre

Experiment at the Bio Beamline, HIMAC

- Microdosimetric measurements were taken at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan
- 400 MeV/u ¹⁶O, 180 MeV/u ¹⁴N and 290 MeV/u¹²C Pristine BP
- Movable platform used to adjust detector depth within a water phantom

Physical dose measured by Ionisation chamber

PTW ionization chamber

Geant4 model of the biological beamline, HIMAC

- Bio Beamline is a horizontal passive research beamline at the Heavy Ion Medical Accelerator in Chiba (HIMAC), NIRS, Japan
- Bio Beamline was modelled and benchmarked in Geant4

180 MeV/u¹⁴N Ion Irradiation

- Parameters measured:
 - Physical dose
 - Dose-mean lineal energy (y_D)
 - \circ Relative Biological Effectiveness (RBE₁₀)

Dose-mean lineal energy measured for 180 MeV/u ¹⁴N ions

180 MeV/u ¹⁴N Ions

RBE₁₀ obtained with SOI microdosimeter in response to pristine BP of ¹⁴N, ¹⁶O and ¹²C ion beam

Depth in water (mm)

Depth in water (mm)

140

160

120

Depth in water (mm)

Conclusions

- New SOI microdosimeter utilizing 3D detector technology was introduced for proton and heavy ion therapy QA
- Measure microdosimetric spectra in active delivery ¹²C pencil beam and characterise ¹⁶O and ¹⁴N ion fields
- The maximum RBE_{10} values for ¹⁴N and ¹⁶O ions occurred just before the maximum physical dose BP.
- Carbon ions have been shown to have a smaller entrance dose mean lineal energy and RBE_{10} occurring at the same position as the maximum physical dose (BP). These findings are important for accurate biological dose prediction using different therapeutic ion beams.
- MicroPlus Probe with SOI Microdosimeters have extremely high spatial resolution

Discuss with senior experienced colleague/mentor as they have more experience and can help avoid too ambitious project or not feasible project

Acknowledgements

$\,\circ\,$ All my co-authors in this paper

- Dr Zeljko Pastuovic and Dr Rainer Siegele from ANSTO accelerator Centre
- Dr. Andrew See at the UNSW ANFF node
- **Prof Elena Pereloma** and her electron microscopy team at the AIIM, University of Wollongong

