The Relative Biological Effectiveness for Carbon, Nitrogen and Oxygen ion beams using passive and scanning techniques evaluated with fully 3D silicon microdosimeters

Linh Tran¹, David Bolst¹, Lachlan Chartier¹, Susanna Guatelli¹, Alex Pogossov¹, Marco Petasecca¹, Michael L. F. Lerch¹, Dale Prokopovich², Marco Povoli³, Angela Kok³, Naruhiro Matsufuji⁴, Tatsuaki Kanai⁵, Michael Jackson⁶ and Anatoly Rosenfeld¹

¹Centre of Medical and Radiation Physics, University of Wollongong
²NSTLI Nuclear Stewardship, Australian Nuclear Science and Technology Organization, Australia
³SINTEF, Norway
⁴National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
⁵Gunma Heavy Ion Medical Centre, Gunma
⁶University of New South Wales, Australia
Advantages of Heavy Ion Therapy

Cell damage due to indirect DNA damage

Cell damage due to direct DNA damage, irreparable DNA breaks

"How to accurately determine RBE?"

Courtesy of M. Scholz
Conventional microdosimeter

- Low energy sensitivity: $y = 0.05\ \text{keV/um}$
- Spherical SV in shape
- Tissue equivalency

- Large size of assembly which reduces spatial resolution and introduces wall effects
- Can not measure an array of cells.
- High voltage applied
- Low degree of portability

Silicon on insulator (SOI) Microdosimeter

- Can measure an array of cells
- Micron sized SV
- Provide true microscopic SV
- Compact size and low voltage for operation
- High spatial resolution.

not tissue equivalent
CMRP Silicon Microdosimeters

SEM image of Mushrooms

Median energy map showing good sensitive volume yield in the Mushroom microdosimeter, biased at -10 V

A. Rosenfeld “Novel detectors for silicon based microdosimetry, their concepts and applications”, NIM A, 809, 156-170, 2016
Heavy Ion Medical Accelerator facilities, Japan

HIMAC heavy ion accelerator in Chiba

Gunma Heavy ion Medical Centre
Experiment at the Bio Beamline, HIMAC

- Microdosimetric measurements were taken at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan
- 400 MeV/u 16O, 180 MeV/u 14N and 290 MeV/u 12C Pristine BP
- Movable platform used to adjust detector depth within a water phantom
Bio Beamline is a horizontal passive research beamline at the Heavy Ion Medical Accelerator in Chiba (HIMAC), NIRS, Japan.

Bio Beamline was modelled and benchmarked in Geant4.
180 MeV/u 14N Ion Irradiation

- Parameters measured:
 - Physical dose
 - Dose-mean lineal energy (y_D)
 - Relative Biological Effectiveness (RBE_{10})

- Physical dose distribution of 180 MeV/u 14N ions

- Dose-mean lineal energy measured for 180 MeV/u 14N ions
180 MeV/u 14N Ions

Dose mean lineal energy and RBE$_{10}$ distribution with microdosimetric spectra for each region along the Bragg Peak.
$180\text{ MeV/u}\ ^{14}\text{N}$

Ions
RBE\textsubscript{10} obtained with SOI microdosimeter in response to pristine BP of 14N, 16O and 12C ion beam

180 MeV/u 14N

400 MeV/u 16O

290 MeV/u 12C
Conclusions

• New SOI microdosimeter utilizing 3D detector technology was introduced for proton and heavy ion therapy QA
• Measure microdosimetric spectra in active delivery 12C pencil beam and characterise 16O and 14N ion fields
• The maximum RBE_{10} values for 14N and 16O ions occurred just before the maximum physical dose BP.
• Carbon ions have been shown to have a smaller entrance dose mean lineal energy and RBE_{10} occurring at the same position as the maximum physical dose (BP). These findings are important for accurate biological dose prediction using different therapeutic ion beams.
• MicroPlus Probe with SOI Microdosimeters have extremely high spatial resolution

Do research of related fields to see if any similar work has been done...if yes, what can be improved

Discuss with senior experienced colleague/mentor as they have more experience and can help avoid too ambitious project or not feasible project
Acknowledgements

○ All my co-authors in this paper

○ Dr Zeljko Pastuovic and Dr Rainer Siegele from ANSTO accelerator Centre

○ Dr. Andrew See at the UNSW ANFF node

○ Prof Elena Pereloma and her electron microscopy team at the AIIM, University of Wollongong